• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on the nonlinear elliptic eigenvalue problems by variational methods

Research Project

Project/Area Number 12640211
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionHIROSHIMA UNIVERSITY

Principal Investigator

SHIBATA Tetsutaro  Hiroshima University, Faculty of Integrated Arts and Sciences, Associate Professor, 総合科学部, 助教授 (90216010)

Co-Investigator(Kenkyū-buntansha) USAMI Hiroyuki  Hiroshima University, Faculty of Integrated Arts and Sciences, Associate Professor, 総合科学部, 助教授 (90192509)
MIZUTA Yoshihiro  Hiroshima University, Faculty of Integrated Arts and Sciences, Professor, 総合科学部, 教授 (00093815)
YOSHIDAK Kiyoshi  Hiroshima University, Faculty of Integrated Arts and Sciences, Professor, 総合科学部, 教授 (80033893)
TANAKA Kazunaga  Waseda University, School of Science and Engineering, Professor, 理工学部, 教授 (20188288)
Project Period (FY) 2000 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥2,300,000 (Direct Cost: ¥2,300,000)
Fiscal Year 2001: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2000: ¥1,200,000 (Direct Cost: ¥1,200,000)
KeywordsNonlinear / Eigenvalue / Asymptotic Analysis / Singular Perturbation / Variational Methods / 楕円型方程式
Research Abstract

1. (1) We studied the nonlinear two-parameter problem -u"(x) + λu(x)^q = μu(x)^p,u(x) > 0,x ∈(0,1),u(0) = u(1) = 0. Here 1 < q < p are constants and λ,μ > 0 are parameters. We established precise asymptotic formulas with exact second term for variational eigencurve μ(λ) as λ→∞. We emphasize that the critical case concerning the decaying rate of the second term is p = (3q - 1)/2 and this kind of criticality is new.
(2) We considered the nonlinear two-parameter problem u"(x) + μu(x)^p = λu(x)^q, u(x) > 0, x ∈ I = (0,1), u(0) = u(1) = 0, where 1 < q < p < 2q + 3 and λ,μ > 0 are parameters. We established the three-term spectral asymptotics for the eigencurve λ = λ(μ) as μ→∞ by using a variational method on the general level set due to Zeidler. The first and second terms of'λ(μ) do not depend on the relationship between p and q. However, the third term depends on the relationship between p and q, and the critical case is p = (3q-1)/2.
2. We considered the nonlinear eigenvalue problem -Δu = λf(u), u > 0 in Ω,u = 0 on ?∂Ω, where Ω=B_R={x ∈ R^N : |x| <R} or A_<a,R> = {x ∈ R^N : a< |x| <R} (N【greater than or equal】2) and λ>0 is a parameter. It is known that under some conditions on f and g, the corresponding solution u_λ develops boundary layers when λ>> 1. We established the asymptotic formulas for the width of the boundary layers with exact second term and the estimate of the third term.
3. We considered several elliptic partial differential equations and parabolic systems related to nonlinear eigenvalue problems and obtained some existence results and qualitative properties of the solutions.

Report

(3 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • Research Products

    (24 results)

All Other

All Publications (24 results)

  • [Publications] Tetsutaro Shibata: "Multiple interior layers of solutions to perturbed elliptic sine-Gordon equation on an interval"Topological Methods in Nonlinear Analysis. 15. 329-357 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tetsutaro Shibata: "Spectral asymptotics of nonlinear elliptic two-parameter problems"Nonlinear Analysis. 43. 75-90 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tetsutaro Shibata: "Asymptotic behavior of eigenvalues for two-parameter perturbed elliptic Sine-Gordon type equations"Results in Mathematics. 39. 155-168 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tetsutaro Shibata: "Interior transition layers of solutions to the perturbed elliptic sine-Gordon equation on an interval"Journal d'Analyse Mathematique. 83. 109-120 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tetsutaro Shibata: "Precise asymptotic formulas for semilinear eigenvalue problems"Annales Henri Poincare. 2. 713-732 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tetsutaro Shibata: "Precise spectral asymptotics for nonlinear Sturm-Liouville problems"Journal of Differential Equations. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tetsutaro Shibata: "Multipte Interior transition layers of solutions to the perturbed, elliptic sine-Gordon equation on an interval"Topological Methods in Nonlinear Analysis. 15. 329-357 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tetsutaro Shibata: "Spectral asymptotics of nonlinear elliptic two-parameter problems"Nonlinear Analysis. 43. 75-90 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tetsutaro Shibata: "Asymptotic behavior of eigenvalues for two-parameter perturbed elliptic Sine-Gordon type equations"Results in Mathematics. 39. 155-168 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tetsutaro Shibata: "Interior transition layers of solutions to the perturbed elliptic sine-Gordon equation on an interval"Journal d'Analyse Mathematique. 83. 109-120 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tetsutaro Shibata: "Precise asymptotic formulas for semilinear eigenvalue problems"Annales Henri Poincare. 2. 713-732 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tetsutaro Shibata: "Precise spectral asymptotics for nonlinear Sturm-Liouville problems"Journal of Differential Equations. (in press).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] Tetsutaro Shibata: "Precise asymptotic formulas for semilinear eigenvalue problems"Annales Henri Poincare. 2・4. 713-732 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Tetsutaro Shibata: "The effect of the variational framework on the spectral asymptotics for two-parameter nonlinear eigenvalue problems"Mathematische Nachrichten. (発表予定).

    • Related Report
      2001 Annual Research Report
  • [Publications] Kiyoshi Yoshida: "Self-similar solutions to chemotactic system"Nonlinear Analysis. 47・2. 813-824 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Yoshihiro Mizuta: "A generalization of the Liouville theorem to polyharmonic functions"Journal of the Mathematical Society of Japan. 53・1. 113-118 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Hiroyuki Usami: "Asymptotic forms of positive solutions of second-order quasilinear ordinary differential equations with sub-homogeneity"Hiroshima Mathematical Journal. 31・1. 35-49 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Kazunaga Tanaka: "Multiple positive solutions for nonhomogeneous elliptic equations"Nonlinear Analysis. 47・6. 3783-3793 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Tetsutaro Shibata: "Multiple interior layers of solutions to perturbed elliptic sine-Gordon equation on an interval"Topological Methods in Nonlinear Analysis. 15・2. 329-357 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] Tetsutaro Shibata: "Spectral asymptotics of nonlinear elliptic two-parameter problems"Nonlinear Analysis. 43・1. 75-90 (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] Tetsutaro Shibata: "Interior transition layers of solutions to perturbed elliptic sine-Gordon equation on an interval"Journal d'Analyse Mathematique. (発表予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] Tetsutaro Shibata: "Asymptotic behavior of eigenvalues for two-parameter perturbed elliptic Sine-Gordon type equations"Results in Mathematics. (発表予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] Tetsutaro Shibata: "Precise spectral asymptotics for nonlinear Sturm-Liouville problems"Journal of Differential Equations. (発表予定).

    • Related Report
      2000 Annual Research Report
  • [Publications] Kazunaga Tanaka: "Periodic solutions for singular Hamiltonian systems and closed geodesics on non-compact Riemannian manifolds"Annales de l'Institut Henri Poincare. Analyse Non Lineaire. 17・1. 1-33 (2000)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi