• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

CRITERIA FOR INTEGRABILITY OF HAMILTONIAN SYSTEMS AND SINGULARITY ANALYSIS

Research Project

Project/Area Number 12640227
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionNATIONAL ASTRONOMICAL OBSERVATORY (NAO)

Principal Investigator

YOSHIDA Haruo  NAO, DIVISION OF ASTROMETRY AND CELESTIAL MECHANICS , ASSOCIATE PROFESSOR, 位置天文・天体力学研究系, 助教授 (70220663)

Co-Investigator(Kenkyū-buntansha) NAKAI Hiroshi  NAO, PUBLIC RELATIONS CENTERS, ASSOCIATE PROFESSOR, 天文情報公開センター, 助教授 (60155653)
TANIKAWA Kiyotaka  NAO, DIVISION OF THEORETICAL ASTROPHYSICS , ASSOCIATE PROFESSOR, 理論天文学研究系, 助教授 (80125210)
Project Period (FY) 2000 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2002: ¥1,200,000 (Direct Cost: ¥1,200,000)
Fiscal Year 2001: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2000: ¥1,500,000 (Direct Cost: ¥1,500,000)
KeywordsHamiltonian dynamical system / Integrability / Criteria / ハミルトン系 / 可積分
Research Abstract

The most important result obtained during the period, 2000-2002, is that the complete list of all integrable homogeneous polynomial potentials was obtained which has polynomial first integral of order four or less with respect to momenta. At the end of 19th century, Darboux obtained the condition such that there exist a first integral that is quadratic or less with respect to momenta. Three special potentials with fourth order integrals were found around 1980. The present result confirms that there are no more integrable potentials rigorously.
When the homogenous potential is cubic or quartic, there exists am example which has genuinely fourth order polynomial integral. However, when the degree of the potential is 5 or more, it is shown that there cannot exist genuinely fourth order polynomial integral. In order to prove this non-existence theorem, it is crucial to use the resultant which tells us when two algebraic equations have a common root.

Report

(4 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • 2000 Annual Research Report
  • Research Products

    (27 results)

All Other

All Publications (27 results)

  • [Publications] H.Yoshida: "Justification of Painleve analysis for Hamiltonian"Physica A. 288. 424-430 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Nakagawa: "A necessary condition for the integrability of"J. Phys. A. 34. 2137-2148 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] H.Yoshida: "Non-existence of the madified first integral by"Phys. Lett. A. 282. 276-283 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Nakagawa: "A list of all integrable two-dimensional homogeneous"J. Phys. A. 34. 8611-8630 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] H.Yoshida: "Non-existence of the modified first integral"Celest. Mech. Dyn. Astron.. 83. 355-364 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Tanikawa: "Dynamical ordering of symmetric non-Birkhoff"Chaos. 12. 33-41 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Yoshida, H.: "Justification of Painleve analysis for Hamiltonian systems by differential Galois theory"Physica A. 288. 424-430 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Yoshida, H. (ed. M.Boiti et al., World Scientific): "Painleve analysis for Hamiltonian systems and its justification by differential Galois theory, in Nonlinearlity, Integrability and all that"Twenty years after NEEDS79. 343-349 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Nakagawa, K. and Yoshida, H.: "A necessary condition for the integrability of homogeneous Hamiltonian systems with two degrees of freedom"J. Phys. A. 34. 2137-2148 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Yoshida, H.: "Non-existence of the modified first integral by symplectic integration methods"Phys LettA. 282. 276-283 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Nakagawa, K. and Yoshida, H.: "A list of all integrable two-dimensional homogeneous polynomial potentials with a polynomial integral of order at most four in the momenta"J. Phys. A. 34. 8611-8630 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Yoshida, H.: "Non-existence of the modified first integral by symplectic integration methods II : Kepler problem"Celest. Mech. Dyn. Astron.. 83. 355-364 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Tanikawa, K. and Mikkola S.: "Triple Collisions in the One-Dimensional Three-Body Problem"Celest. Mech. Dyn.Astron.. 76. 23-34 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Tanikawa, K. and Ito, T.: "Synchronization of orbital elements and stability of protoplanet systems"Publ. Astron. Soc. Japan. 53. 143-151 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Yamaguchi, Y. and Tanikawa, K.: "Non-symmetrical non-Birkhoff period 2 orbits in the Standard mapping"Prog. Theor. Phys.. 106. 691-696 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Yamaguchi, Y. and Tanikawa, K.: "Dynamical ordering of Non-Birkhoff periodic orbits in a forced pendulum"Prog. Theor. Phys.. 106. 1097-1114 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Umehara, H. and Tanikawa, K.: "Improvement of triple-encounter criterion"Publ. Astron. Soc. Japan. 53. 693-697 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Tanikawa, K. and Yamaguchi, Y.: "Dynamical ordering of symmetric non-Birkhoff periodic points in reversible monotone twist mappings"Chaos. 12. 33-41 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] H.Yoshida: "Non-existence of the modified first integral by symplectic integration methods II : Kepler problem"Celest.Mech.Dyn.Astron.. 83. 355-364 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Ito, K.Tanikawa: "Long-term integrations and stability of planetary orbits in our solar system"Mon.Not.R.Astron.Soc.. 336. 483-500 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] H.Yoshida: "Justification of Painleve analysis by ditterential Galois Theory"Physica A. 288. 424-430 (2000)

    • Related Report
      2001 Annual Research Report
  • [Publications] K.Nakagawa, H.Yoshida: "A Necessary Condition for the Integrability of"J.Phys.A. 34. 2137-2148 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] K.Nakagawa, H.Yoshida: "A List of ALL Integrable 2D Homogeneous pdynomial"J.Phys.A. 34. 8611-8630 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] H.Yoshida: "Non-existence of Modified First Integral by Symplectic"Phys.Lett.A. 282. 276-283 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] H.Yoshida: "Justification of Painleve analysis by differential Galois theory"Physica A. 288. 424-430 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] K.Nakagawa: "A necessary condition for the integrability of homogeneous"Journal of Physics A. 34. (2001)

    • Related Report
      2000 Annual Research Report
  • [Publications] 吉田春夫: "微分ガロア理論にもとづくHamilton系の可積分性の必要条件"天体力学研究会集録. 32. 338-345 (2000)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi