• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of High-Capacity Rechargeable Battery with a Lithium Metal Anode

Research Project

Project/Area Number 12650813
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 工業物理化学
Research InstitutionYamaguchi University

Principal Investigator

YOSHIMOTO Nobuko  Yamaguchi University, Faculty of Engineering, Research Associate, 工学部, 助手 (30253173)

Co-Investigator(Kenkyū-buntansha) ISHIKAWA Masashi  Yamaguchi University, Faculty of Engineering, Associate, 工学部, 助教授 (30212856)
MORITA Masayuki  Yamaguchi University, Faculty of Engineering, Professor, 工学部, 教授 (70136167)
Project Period (FY) 2000 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2001: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2000: ¥2,700,000 (Direct Cost: ¥2,700,000)
KeywordsRechargeable Li batteries / Lithium Anode / Electrode / electrolyte interface / Lithium metal / Organic electrolyte / Electrolytic salts / Metallic salt additives / Charge-discharge efficiency / リチウムニ次電池 / 低温処理 / 充放電効サイクル寿命
Research Abstract

Improving the reversibility of charge-discharge properties, the optimization of a Li metal anode/electrolyte interface was investigated by modifying physically or chemically. The results are summarized as follows.
1. Optimization for physical and chemical structure of Li metal anode/electrolyte interface A Li metal anode/electrolyte interface have been modified by electrodeposition of Li on a Ni substrate at a low temperature (-20℃) in PC-DMC with LiPF_6 or Li (C_2F_5SO_2)_2N and by the following Low-temperature cycling of electrodeposited Li. When a Li metal anode with the interface modified at -20℃ was cycle at 25℃, the cycle life of the anode in the LiPF_6/PC-DMC system was improved. Addition of metal salts (MgI_2, AlI_3) in organic electrolyte solutions has been examined to improve the coulombic efficiency for Li deposition/dissolution cycles. In the case of AlI_3 addition, the highest cycle life was obtained when AlI_3 was only added to the solution for the first deposition.
2. Electrochemical analysis for interfacial structure and electrochemical behavior of Li metal anode Optical observation with a CCD microscope revealed that the precycling in the low-temperature electrolytes provided an uniform Li-interface which remained on Li even after a rinse in temperature to 25℃. The ac impedance analysis suggested that the addition of AlI_3 is effective to keep the resistance at the Li/electrolyte interface low after the repeated cycles.
3. Effect of polarization behavior of current collector in organic electrolyte The anodic polarization behavior of Al as a current collector of Li ion battery has been investigated in organic electrolyte solutions containing different lithium salts. The AI current collector has suffered the corrosion in the solution containing Li (CF_3SO_2)_2N and Li (C_2F_5SO_2)_2N under an anodic polarization condition, whereas it was anodically stable in the LiPF_6 solution.

Report

(3 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] 森田 昌行, 石川 正司: "リチウムイオン電池の混合有機溶媒電解質のイオン構造"電池技術. 12. 56-64 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M.Morita, N.Yoshimoto, M.Ishikawa et al.: "Electrochemical Behavior of Al in Organic Solutions Containing Different Lithium Salts"Proceedings of the 4th Japan-Korea Joint Seminar on Advanced Batteries. 70-75 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M.Ishikawa, N.Yoshimoto et al.: "Optimization of Physicochemical Characteristics of a Lithium Anode Interface for High-efficiency Cycling : An Effect of Electrolyte Temperature"J.Power Sources. 97-98. 262-264 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 吉本 信子, 石川 正司, 森田 昌行 他: "リチウムイオン電池用有機電解液中でのアルミニウムの陽分極挙動"表面技術. 52・8. 581-582 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 石川 正司, 吉本 信子, 森田 昌行 他: "二次電池用リチウム金属負極表面のその場観察-低温前処理の影響-"表面技術. 53・3. 219-220 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 石川 正司, 森田 昌行: "「21世紀のリチウム二次電池技術」,第2章4節 電解質"(株)シーエムシー出版. 87-115(215) (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M.Morita, M.Ishikawa: "Ionic Structures of Organic Electrolyte Solutions with Binary Solvent Systems for Lithium Ion Batteries"Battery Technology. 12. 56-64

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M.Ishikawa, N.Yoshimoto, M.Morita, et al: "Optimization of Physicochemical Characteristics of a Lithium Anode Interface for High-efficiency Cycling : An Effect of Electrolyte Temperature"J.Power Sources. 97-98. 262-264 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] N.Yoshimoto, M.Ishikawa, M.Morita, et al: "Anodic Behavior of Aluminum in Organic Electrolyte Solutions for Lithium Ion Batteries"Hyoumen Gijutu. 52-8. 581-582 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M.Ishikawa, N.Yoshimoto, M.Morita, et al: "In Situ Observation of Lithium Metal Anode for Rechargeable Lithium Batteries - Effects of Low-Temperature Precycling -"Hyoumen Gijutu. 53-3. 219-220 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M.Ishikawa, M.Morita: "Lithium Secondary Battery Technology for the 21 st Century, Chapter 2. The Newest Technology of Rechargeable Lithium Battery Materials, Section 4. Electrolyte"CMC CO., Ltd. 87-115 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M.Ishikawa, N.Yoshimoto et al.: "Optimization of Physicochemical Characteristics of a Lithium Anode Interface High-efficiency Cycling : An Effect of Electrolyte Temperature"J. Power Sources. 97-98. 262-264 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 吉本信子, 石川正司, 森田昌行 他: "リチウムイオン電池用有機電解液中でのアルミのウムの陽分極挙動"表面技術. 52・8. 581-582 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 石川正司, 吉本信子, 森田昌行 他: "二次電池用リチウム金属負極表面のその場観察-低温前処理の影響-"表面技術. 53・3(印刷中). (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] 石川正司, 森田昌行: "「21世紀のリチウム二次電池技術」,第2章4節電解質"(株)シーエムシー出版. 87-115(215) (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] M.Ishikawa,N.Yoshimoto et al.: "Optimization of Physicochemical Characteristics of a Lithium Anode Interface High-efficiency Cycling : An Effect of Electrolyte Temperature"J.power sources. (in press).

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi