• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Computational Study on Recognition and Memory in the Asymmetric <symmetric Neural Networks

Research Project

Project/Area Number 12680379
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionNagoya Institute of Technology

Principal Investigator

ISHII Naohiro  Nagoya Inst. Tech., Intell. & Comp., Professor, 工学部, 教授 (50004619)

Co-Investigator(Kenkyū-buntansha) YAMAUCHI Koichiro  Hokkaidou Univ., Associate Professor, 工学研究科, 助教授 (00262949)
IWAHORI Yuji  Nagoya Inst. Tech., Media Center, Professor, 工学部, 教授 (60203402)
Project Period (FY) 2000 – 2001
Project Status Completed (Fiscal Year 2001)
Budget Amount *help
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2001: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2000: ¥2,400,000 (Direct Cost: ¥2,400,000)
KeywordsNeural Network / Asymmetric network / Nonlinear Analysis / Construction of two asymmetric network / Moving stimulus / Retinal networks / Higher-order correlation / Optimal pathway / 生物ニューラルネット / 非対称ニューラルネット / 空間相関 / センサー情報の統合 / 高速学習 / 追加学習
Research Abstract

Biological neural networks are different from artificial neural networks. There are functionally different neurons in the networks. In the field of neuro-physiology , neurons are classified into cells with several types of function by the experiments. We classify the biological neural network morphologically into two types of sub-networks. One is the symmetrical network, while the other is the asymmetrical network. We extended this asymmetrical network to the generalized asymmetrical network to clarify the characteristics of the asymmetrical networks. The generalized asymmetrical network extended to the parallel network with the odd nonlinear pathway of neurons and the even nonlinear pathway of neurons. The function of this generalized asymmetrical networks, is analyzed by Wiener analysis method. Then, the temporal correlations are important in the asymmetrical network. We derived this generalized network is reduced to the asymmetrical network, which consists of the parallel network with the linear pathway, which shows an odd nonlinearity, and with the nonlinear pathway, which shows the 2nd order nonlinearity. We clarified that the biological network is composed with two asymmetrical sub-networks, which realizes the spacial and temporal correlation as the stimulus information transmitted to the central neural network.

Report

(3 results)
  • 2001 Annual Research Report   Final Research Report Summary
  • 2000 Annual Research Report
  • Research Products

    (22 results)

All Other

All Publications (22 results)

  • [Publications] N.Ishii, M Nakamura, M.Ohta: "Correlation Functions in Nonlinear Newel Networks"Proc. the Seventh Int. Synp. on Art. Life & Robotics. vol.1. 148-151 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H.Takeuchi, K.Yamauchi, N.Ishii: "A Study of Improvement in Robust of Sensor Int. for Autonornors Robots"Proc. the Seventh Int. Synp. on Art. Life & Robotics. vol.1. 161-164 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M.Ohta, N.Ishii, M.Nakamura: "Optimization with Linear Constraints in the Neural Networks"Leature Notes in Computer Science. vol.2084. 561-569 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H.Takeuchi, K.Yamauchi, N.Ishii: "Self-supervisees Leaning and Recognition by Integrating Int."Proc. IEEE Conf. on Ind. Electronics C&I. (IECON). 1195-1200 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] N.Yamaguchi, Yamauchi, N.Ishii: "An Incremental Learning Method using Weighteal Magnitude"Proc. IEEE Conf. on Ind. Electronics C&I. (IECON). 1189-1194 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] K.Iwata, N.Ishii: "A generation method of initial training data on active leaning"Int. Journal of Knowledge-Based Intelli : Eng. Systems. (印刷中). (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] 鳥脇, 石井直宏, 鶴岡著: "情報数学(インターユニバーソティシリーズ)"オーム社. (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] N.Ishii, H.Nakamura,M.Ohta: "Correlation Functions in Nonlinear Neural Networks"Proc. Of the Seventh International Artificial Life & Robotics. 148-151 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H.Takeuchi, K.Yamauchi, N.Ishii: "A Study of Improvement in Robust. Of Sensor Information for Autononous Robots"Proc. Of the Seventh International Artificial Life & Robotics. 161-164 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] M.Ohta, N.Ishii, M.Nakamura: "Optimization with Linear Constraints In the Neural Networks"Lecture Notes in Computer Science(Springer Verlag). Vol2083. 561-569 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] H.Takeuchi, K.Yamauchi, N.Ishii: "Self-supervised Learning and Recognition by Integrating Sensory Information"Proc. Of IEEE Conference on Industrial Electronics, Control and Instrumentation, IECON. 1195-1200 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] N.Yamaguchi, K.Yamauchi, N.Ishii: "An Incremental Learning Method using weighted Magnitude"Proc. Of IEEE Conference on Industrial Electronics, Control and Instrumentation, IECON. 118-119 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2001 Final Research Report Summary
  • [Publications] N.Ishii, M.Nakamura, M.Ohta: "Correlation Function in Nonlinear Neural Networks"Proc.the Seventh Int.Symp.on Art.Life & Robotics. vol1. 148-151 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] H.Takeuchi, K.Yamauchi, N.Ishii: "A Study of Improvement in Robust.of Sensor Inf.for Autonomous Robots"Proc.the Seventh Int.Symp.on Art.Life & Robotics. vol1. 161-164 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] M.Ohta, N.Ishii, M.Nakamura: "Optimization with Linear Const.in the Neural Networks"Lecture Notes in Computer Science. No.2084. 561-569 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] H.Takeuchi, K.Yamauchi, N.Ishii: "Self-supervised Leaming and Recognition by Integrating Inf."Proc.2000 IEEE Conf.on Ind.Electronics C & I. (IECON). 1195-1200 (2000)

    • Related Report
      2001 Annual Research Report
  • [Publications] N.Yamaguchi, Yamauchi, N.Ishii: "An Incremental Learning Method using Weighted Magnitude"Proc.2000 IEEE Conf.on Ind.Electronics C & I. (IECON). 1189-1194 (2000)

    • Related Report
      2001 Annual Research Report
  • [Publications] 鳥脇純郎, 石井直宏, 鶴岡: "情報数学(インターユニバーシティシリーズ)"オーム社. (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] H.Takeuchi,K.Yamauchi,N.Ishii: "Self-superoised learning and Recognition by lutegrating Information"Proc.2000 IEEE Conf.on Ind.Electronics C.& I. (IECON). 1195-1200 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] N.Yamaguchi,K.Yamauchi,N.Ishii: "An Incremental Learning Method using Weighted Magnitude"Proc.2000 IEEE Conf.on Ind.Electronics C & I. (IECON). 1189-1194 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] N.Yamaguchi,K.Yamauchi,N.Ishii: "a Method of Merging Hidden Units of RBF Networks."Proc.International Conf.on Neural Inf.Process.. (ICONIP). 1-3 (2000)

    • Related Report
      2000 Annual Research Report
  • [Publications] K.Yamauchi,S.Ito,N.Ishii: "Wake-Sleep Learning method for quick adaptation"Proc.International Conf.on Neural Inf.Process.. (ICONIP). 1-6 (2000)

    • Related Report
      2000 Annual Research Report

URL: 

Published: 2000-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi