固体媒質におけるコヒーレンス及び干渉効果に基づいた量子情報
Project/Area Number |
12F02204
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 外国 |
Research Field |
原子・分子・量子エレクトロニクス
|
Research Institution | The Institute of Physical and Chemical Research |
Principal Investigator |
NORI FRANCO (2013) 独立行政法人理化学研究所, 創発物性科学研究センター, グループディレクター
NORI Franco (2012) 独立行政法人理化学研究所, デジタル・マテリアル研究チーム, チームリーダー
|
Co-Investigator(Kenkyū-buntansha) |
LU Xinyou 独立行政法人理化学研究所, 創発物性科学研究センター, 外国人特別研究員
LU Xinyou 独立行政法人理化学研究所, デジタル・マテリアル研究チーム, 外国人特別研究員
|
Project Period (FY) |
2012 – 2013
|
Project Status |
Completed (Fiscal Year 2013)
|
Budget Amount *help |
¥2,300,000 (Direct Cost: ¥2,300,000)
Fiscal Year 2013: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2012: ¥1,200,000 (Direct Cost: ¥1,200,000)
|
Keywords | Hybrid quantum circuit / Quantum memory / Kerr nonlinearity / Optomechanics / Photon blockade / 超電導量子回路 / 窒素欠陥中心アンサンブル / ハイブリッド量子回路 / 量子ストレージ / 2量子ビット量子ゲート |
Research Abstract |
During FY2013, we mainly studied quantum manipulation in hybrid quantum circuits, and their application in quantum information science. The main results are : (1) We proposed the methods to realize strong spin-resonator coupling and high-fidelity quantum storage using the hybrid quantum architectures including flux qubits, nitrogen-vacancy center ensemble (NVE) and transmission-line resonator. Firstly, we proposed an experimentally realizable hybrid quantum circuit for achieving a strong coupling between a spin ensemble and a transmission-line resonator via a superconducting flux qubit used as a data bus. Our result show that the spin-resonator coupling strength can be enhanced two orders based on our proposal. Also, we proposed how to realize high-fidelity quantum storage using a hybrid quantum architecture including two coupled flux qubits and a nitrogen-vacancy center ensemble (NVE). This proposed hybrid quantum circuit could enable a long-time quantum memory when storing information in the spin ensemble. (2) We investigated a hybrid electro-optomechanical system that allows us to realize controllable strong Kerr nonlinearities even in the weak-coupling regime. We showed that when the controllable electromechanical subsystem is close to its quantum critical point, strong photon-photon interactions can be generated by adjusting the intensity (or frequency) of the microwave driving field. Nonlinear optical phenomena, such as the appearance of the photon blockade and the generation of nonclassical states (e.g., cat states), are demonstrated in the weak-coupling regime, making the observation of strong Kerr nonlinearities feasible with currently available optomechanical technology.
|
Strategy for Future Research Activity |
(抄録なし)
|
Report
(2 results)
Research Products
(9 results)