• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

ネター多元環における導来同値とその不変量である自己移入次元の有限性に関する研究

Research Project

Project/Area Number 12J02105
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeSingle-year Grants
Section国内
Research Field Algebra
Research InstitutionUniversity of Tsukuba

Principal Investigator

古賀 寛尚  筑波大学, 数理物質系, 特別研究員(PD)

Project Period (FY) 2012 – 2013
Project Status Completed (Fiscal Year 2013)
Budget Amount *help
¥1,800,000 (Direct Cost: ¥1,800,000)
Fiscal Year 2013: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2012: ¥900,000 (Direct Cost: ¥900,000)
Keywords導来同値 / 傾斜鎖複体 / 傾加群 / 変異 / 自己移入次元 / ゴレンシュタイン次元
Research Abstract

与えられた環(単位元を持ち結合律を満たす)の表現論的構造やホモロジー代数的性質を解明するにあたり、森田同値や導来同値の概念は極めて重要な役割を果たしている。二つの環が森田同値であるとき、ホモロジー代数的性質は同一であると見做せるのである。導来同値は森田同値の導来加群圏への一般化として捉えることができる。森田同値ならば導来同値であることを注意しておく。導来同値に関して、様々な不変量が知られており、導来同値な二つの環はホモロジー代数的性質がかなり近い事が分かる。そのため導来同値を引き起こす傾斜鎖複体を多く構成し、それらについて考察することが重要であり、現在も活発に研究が進められている。その研究の一つに変異の理論がある。
本研究の目的の一つは導来同値を引き起こすネター多元環上の傾斜鎖複体及び傾加群の変異が起きるための必要条件及び十分条件を与えることであった。もう一つの目的は、導来同値の不変量である自己移入次元の有限性に関するもので、アルティン多元環に対して、両側の自己移入次元が有限であることと、任意の有限生成加群のゴレンシュタイン次元が有限であることが同値になるという星野の結果の両側ネター環への一般化を行うことであった。
本年度は、星野との共同研究により、星野の結果をネター多元環へ基礎環の素イデアルによる局駈化を用いて精密化することに成功した。さらにネター多元環が局所環である時に、自己移入次元が両側で有限になる必要十分条件を深度を用いる事で与えた。

Strategy for Future Research Activity

(抄録なし)

Report

(2 results)
  • 2013 Annual Research Report
  • 2012 Annual Research Report
  • Research Products

    (4 results)

All 2013 2012

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (1 results)

  • [Journal Article] Finiteness of Selfinjective Dimension for Noetherian Algebras2013

    • Author(s)
      M. Hoshino and H. Koga
    • Journal Title

      Comm. Algebra

      Volume: 41 Issue: 9 Pages: 3414-3428

    • DOI

      10.1080/00927872.2012.686645

    • Related Report
      2013 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Semi-tilting modules and mutation2012

    • Author(s)
      H. Koga
    • Journal Title

      Algebr. Represent. Theory (to appear). Online First.

      Volume: 16 Issue: 5 Pages: 1469-1487

    • DOI

      10.1007/s10468-012-9365-z

    • Related Report
      2012 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Zaks' lemma for coherent rings2012

    • Author(s)
      M. Hoshino and H. Koga
    • Journal Title

      Algebr. Represent. Theory (to appeal). Online First

      Volume: 16 Issue: 6 Pages: 1647-1660

    • DOI

      10.1007/s10468-012-9376-9

    • Related Report
      2012 Annual Research Report
    • Peer Reviewed
  • [Presentation] Semi-tilting modules and mutation2012

    • Author(s)
      H. Koga
    • Organizer
      ICRA 2012
    • Place of Presentation
      Bielefeld University, Germany
    • Year and Date
      2012-08-17
    • Related Report
      2012 Annual Research Report

URL: 

Published: 2013-04-25   Modified: 2024-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi