Project/Area Number |
13480288
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Biomedical engineering/Biological material science
|
Research Institution | The University of Tokyo |
Principal Investigator |
ISHIHARA Kazuhiko The University of Tokyo, Department of Materials Engineering, Professor, 大学院・工学系研究科, 教授 (90193341)
|
Co-Investigator(Kenkyū-buntansha) |
WATANABE Junji The University of Tokyo, Department of Materials Engineering, Professor, 大学院・工学系研究科, 助手 (60323531)
IWASAKI Yasuhiko Tokyo Medical and Dental University, Institute of Biomaterials and Bioengineering, Associate Professor, 生体材料工学研究所, 助教授 (90280990)
|
Project Period (FY) |
2001 – 2004
|
Project Status |
Completed (Fiscal Year 2004)
|
Budget Amount *help |
¥14,700,000 (Direct Cost: ¥14,700,000)
Fiscal Year 2004: ¥2,100,000 (Direct Cost: ¥2,100,000)
Fiscal Year 2003: ¥2,000,000 (Direct Cost: ¥2,000,000)
Fiscal Year 2002: ¥2,200,000 (Direct Cost: ¥2,200,000)
Fiscal Year 2001: ¥8,400,000 (Direct Cost: ¥8,400,000)
|
Keywords | Polymer alloy / Phospholipid polymers / Polyolefine / Polyurethane / Polyester / Compatibility / Blending / Biomaterials / セグメント化ポリウレタン / 生体適合性 / 細胞接着 / サイトカイン / 表面修飾 / 力学的特性 / キャスト膜 / 埋植材料 / ポリエチレン / 極性・非極性 |
Research Abstract |
In this research, polymer alloys composed of conventional polymer materials, such as, polyurethane and polysulfone, polyolefine and newly designed phospholipid polymers were researched as follows : To improve the biocompatibility of a segmented polyurethane (SPU), 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymer was blended in the SPUs, such as Pellethane【○!R】 and TM-3【○!R】, by a solvent evaporation method from a homogeneous solution containing both SPU and MPC copolymer. X-ray electron spectra(XPS) indicated that the MPC moieties were located at the surface of the SPU membrane blended with the MPC copolymer even when the composition of the MPC copolymer was only 7.5 w/w % against the matrix SPU. The mechanical property of the SPU membranes, as determined by tensile stress-strain measurements, changed very little by addition of the MPC copolymer. Biocompatibility of the MPC copolymer blended membrane was evaluated by plasma protein adsorption and blood cell adhesion on the surfa
… More
ce. The amount of fibrinogen adsorbed on the SPU membrane significantly decreased by addition of the MPC copolymers. Moreover, addition of MPC copolymer in the SPU membrane suppressed platelet adhesion and activation. It is concluded that the blending of the MPC copolymer in the SPU membrane is an effective method to improve biocompatibility of the SPU membrane. Nonfouling polysulfone hollow fiber membranes from protein adsorption and deposition were newly developed by addition of MPC polymer. To improve hydrophilicity, permeability, and nonfouling characteristics of the PSf hollow fiber in a hemodialyzer, we synthesized a MPC polymer, which can be blended with PSf for preparing the polymer alloy (PSf/MPC polymer). The composition of the MPC polymer blended in the PSf was in the range between 7.0 and 15-wt%. From the PSf/MPC polymer solution, flat membranes and hollow fiber could be prepared. These membranes took an asymmetric structure and its mechanical strength was good. The surface characterization of the PSf/MPC polymer hollow fiber membrane by XPS revealed that the MPC units were concentrated at the surface. The permeability for solutes through the PSf/MPC polymer membrane was higher and the amount of protein adsorbed on the PSf/MPC polymer membrane was lower than those of the PSf membrane. Moreover, platelet adhesion was also effectively inhibited on the PSf/MPC polymer membrane Less
|