• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

DEVELOPMENT OF PROGRAM ON NONLINEAR STRUCFURAL ANALYSIS USING NEURAL NETWORK

Research Project

Project/Area Number 13555134
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section展開研究
Research Field 構造工学・地震工学
Research InstitutionKyushu University

Principal Investigator

MAZDA Taiji  KYUSHU UNIVERSITY, CIVIL ENGINEERING, ASSOCLATE PROFESSOR, 工学研究院, 助教授 (50264065)

Co-Investigator(Kenkyū-buntansha) OTSUKA Hisanori  KYUSHU UNIVERSITY, CIVIL ENGINEERING, PROFESSOR, 工学研究院, 教授 (70108653)
YABUKI Wataru  KYUSHU UNIVERSITY, CIVIL ENGINEERING, RESEARCH ASSOCIATE, 工学研究院, 助手 (70304748)
YAMAMOTO Kosuke  CRIEPI, SENIOR RESEARCHER, 構造部, 主任研究員
Project Period (FY) 2001 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥12,800,000 (Direct Cost: ¥12,800,000)
Fiscal Year 2003: ¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 2002: ¥2,300,000 (Direct Cost: ¥2,300,000)
Fiscal Year 2001: ¥8,800,000 (Direct Cost: ¥8,800,000)
Keywordsneural network / non-linear / hysteretic behavior / dynamic response analysis / high damping rubber bearing / 非線形履歴 / 免震支承
Research Abstract

Generally, in formulating a spring-mass model for hysteric behavior of materials and members with inelastic characteristic, a mathematical model based on load-deformation experimental results is considered. The model must approximate the inelastic hysteresis of the material. However, assumption of material's behavior using mathematical models is crucial, since it may cause serious errors if inappropriate model is applied for a particular situation. This research describes multiple layered neural network to simulate the non-linear hysteretic behavior like Ramberg-Osgood model, modified bilinear model and Takeda model. In this study, based on the pattern recognition ability of neural network, non-linear hysteretic behavior was modeled by the network directly without replacing it with a mathematical model. The effectiveness and applicability of the network in numerical analysis were evaluated. Generalized multiple layered neural network to evaluate non-linear hysteretic curve was constructed. The network can recognize well the three types of hysteretic curve. The network is available as a subroutine of non-linear spring in dynamic response analysis.

Report

(4 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • 2001 Annual Research Report
  • Research Products

    (10 results)

All 2003 2002 2001 Other

All Journal Article (6 results) Publications (4 results)

  • [Journal Article] Construction of Generalized Neural Network System for Recognizing Several Non-linear Behaviors2003

    • Author(s)
      T.Mazda, H.Otsuka, W.Yabuki, K.Iwamoto
    • Journal Title

      ASME PVP SeismicEngineering-2003 Vol.466

      Pages: 143-151

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Journal Article] A Study on Generalized Neural Network System for Recognizing Nonlinear Behaviour of Structures2002

    • Author(s)
      T.Mazda, H.Otsuka, W.Yabuki, M.Tsuruta
    • Journal Title

      Proceedings of The Third International Conference on Engineering Computational Technology (CD-ROM)Book No.85

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Journal Article] A Study on Generalized Neural Network System for Recognizing Nonlinear Behaviour of Structures2002

    • Author(s)
      T.Mazda, H.Otsuka, W.Yabuki, M.Tsuruta
    • Journal Title

      Proceedings of The Third International Conference on Engineering Computational Technology No.85(CD-ROM)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Journal Article] Study on the Nonlinear Behavior of the Prestressed Concrete Girder by a Neural Network2001

    • Author(s)
      Wataru YABUKI, Taiji MAZDA, Hisanori OTSUKA
    • Journal Title

      Earthquake Resistant Engineering Structures WIT Press

      Pages: 681-690

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Journal Article] ニューラルネットワークによるPC上部構造非線形挙動の認識2001

    • Author(s)
      矢葺 亘, 大塚久哲, 松田泰治
    • Journal Title

      第11回プレストレストコンクリートの発展に関するシンポジウム

      Pages: 675-678

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Journal Article] Study on the Nonlinear Behavior of the Prestressed Concrete Girder by a Neural Network2001

    • Author(s)
      Wataru YABUKI, Taiji MAZDA, Hisanori OTSUKA
    • Journal Title

      3rd International Symposium on Earthquake Resistant Engineering Structures, (WIT Press)

      Pages: 681-690

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Mazda, H.Otsuka, W.Yabuki, K.Iwamoto: "Construction of generalized neural network system for recognizing several non-linear behaviors"ASME PVP-Vol.466, SEISMIC ENGINEERING 2003. Vol.466. 143-151 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] T.Mazda, H.Otsuka, W.Yabuki, M.Tsuruta: "A Study on Generalized Neural Network System for Recognizing Nonlinear Behaviour of Structures"Proceedings of The Third International Conference on Engineering Computational Technology. (CD-ROM)BOOK No.85. 85 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Wataru YABUKI, Taiji MAZDA, Hisanori OTSUKA: "Study on the Nonlinear Behavior of the Prestressed Concrete Girder by a Neural Network"3rd International Symposium on Earthquake Resistant Engineering Structures 2001. 681-690 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 矢葺 亘, 大塚久哲, 松田泰治: "ニューラルネットワークによるPC上部構造非線形挙動の認識"第11回プレストレストコンクリートの発展に関するシンポジウム. 675-678 (2001)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi