• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of blowing-aps.

Research Project

Project/Area Number 13640034
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTokyo Metropolitan University

Principal Investigator

KAWASAKI Takeshi  Tokyo Metropolitan University, Graduate School of Science, assistant, 理学研究科, 助手 (40301410)

Co-Investigator(Kenkyū-buntansha) TERAO Hiroaki  Tokyo Metropolitan University, Graduate School of Science, professor, 理学研究科, 教授 (90119058)
KURANO Kazuhiko  Meiji University, school of soi. and teohv, professor, 理工学部, 教授 (90205188)
Project Period (FY) 2001 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥3,700,000 (Direct Cost: ¥3,700,000)
Fiscal Year 2003: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2002: ¥1,400,000 (Direct Cost: ¥1,400,000)
Fiscal Year 2001: ¥1,300,000 (Direct Cost: ¥1,300,000)
KeywordsCohen-Macaulay ring / excellent ring / Rees algebra / dualzing complex / Cousin complex / Rees環 / blowing-up / Cohen-Macaulay化 / 正準加群 / 双対化複体 / cousin複体 / スタンダード・パラメーター系 / Noether環 / 特異点解消
Research Abstract

Let A be a Noetherian ring and I an ideal of A. If I is of positive height and the Rees algebra R(I) of I is Cohen-Macaulay, then R(I) is called an Arithmetic Cohen-Macaulayfication of A. We give a necessary and sufficient condition for A to have an arithmetic Macaulayfication. That is, A has an arithmetic Macaulayfication if and only if A satisfies
(C1)A is universally catenary ;
(C2)all the formal fiber of any localization of A are Cohen-Macaulay ;
(C3)the Cohen-Macaulay locus of any finitely generated A-algebra B is open in Spec B ;
(QU)for any pair of prime ideals p ⊂ q, ht q = ht q/p + ht p ;
(UM)A has no embedded primes.
In consequence of this result, we show that A is a homomorphic image of a Cohen-Macaulay ring if and only if A satisfies (C1)-(C3) and
(CD)A has a codimension function.

Report

(4 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • 2001 Annual Research Report
  • Research Products

    (13 results)

All Other

All Publications (13 results)

  • [Publications] Kawasaki, Takesi: "On arithmetic Cohen-Macaulayfication of Noetherian rings"Trans.Amer.Math.Soc.. 354. 123-149 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Kawasaki, Takesi: "On arithmetic Macaulayfication of Noetherian rings"Trans.Amer.Math.Soc.. 123-149 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Kurano, Kazuhiko: "On Chowgroups of G-graded rings"Comm.Algebra. 31. 2141-2160 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Terao, Hiroaki: "The Poincare series of the algebra of rational functions"J.Algebra. 266. 169-179 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] K.Kurano: "On Maps of Grothendieck groups induced by completion"J. Algebra. 254. 21-43 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] K.Kurano: "Todd classes of affine cones of Grassmaunians"Int. Math. Res. Notices. 35. 1841-1855 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] K.kurano: "On Chow groups of G-graded rings"Comm. Algebra. 31. 2141-2160 (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] 川崎 健: "On Arithmetic Macanlay fication of Noetherian Rings"Trans. Amer. Math. Soc.. 354. 123-149 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] 蔵野和彦: "Test modules to calculate Dutta Multiplicities"J. of Algebra. 236. 216-235 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 蔵野和彦: "On Roberts rings"J. Math. Soc. Japan. 53. 333-355 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 蔵野和彦: "Roberts rings and Dutta multiplicities"Lect. Notes in Pure and Applied Math.. 217. 273-287 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 蔵野和彦: "On maps of Grothendieck groups induced by completion"J. of Algebra.

    • Related Report
      2001 Annual Research Report
  • [Publications] 蔵野和彦: "On Chow groups of G-graded rings"Comm. of Algebra.

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi