• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies on spaces with algebraic group action and representation theory

Research Project

Project/Area Number 13640039
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTokyo University of Agriculture and Technology

Principal Investigator

SEKIGUCHI Jiro  Tokyo University of Agrieulture and Technology, Faculty of Technology, Professor, 工学部, 教授 (30117717)

Co-Investigator(Kenkyū-buntansha) MAEDA Hironobu  Tokyo University of Agriculture and Technology, Faculty of Technology, Associate Professor, 工学部, 助教授 (50173711)
WADA Tomoyuki  Tokyo University of Agriculture and Technology, Faculty of Technology, Professor, 工学部, 教授 (30134795)
Project Period (FY) 2001 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥3,000,000 (Direct Cost: ¥3,000,000)
Fiscal Year 2002: ¥1,400,000 (Direct Cost: ¥1,400,000)
Fiscal Year 2001: ¥1,600,000 (Direct Cost: ¥1,600,000)
KeywordsNilpotent orbit / Exceptional Lie algebra / Hyperbolic orbit / Compactification / Regular polyhedra / Monodromy / 単純リー環 / 対称対 / 鏡映群 / Simple Lie algebra / nilpotent orbit / symmetric pair / hyperbolic orbit / compactification
Research Abstract

1. J. Sekiguchi studied an imbedding of nilpotent orbits of an exceptional real simple Lie algebra into another. (A joint work with Professor D. Z. Djokovic)
2. J. Sekiguchi studied hyperbolic orbits of real semisimple Lie algebras and compactificiations of them. This work was reported at NUS-JSPS Workshop on ALGEBRA held in Singapore 2001 and also done at a meeting held in RIMS, Kyoto Univ., 2002.
3. J. Sekiguchi studied the relationship between regular polyhedral groups and monodromy groups of Appell's hypergeometric functions. (A joint work with Prof. M. Kato (Univ. of Ryukyus))

Report

(3 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • Research Products

    (11 results)

All Other

All Publications (11 results)

  • [Publications] D.Z.Djokovic, N.Lemire, J.Sekiguchi: "The closure ordering of adjoint nilpotent ornits in so(p, q)"Tohoku Math.J.. 53. 395-442 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] E.Bannai, M.Koike, A.Munemasa, J.Sekiguchi: "Some results on modular groups"Advanced Studies in Pure Math.. 32. 245-254 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] D.Z.Djokovic, J.Sekiguchi: "Mapping of nilpotent orbits under embedding of real forms of exceptional complex Lie algebras"Asian J.Math.. 6. 409-432 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] D.Z.Djokovic, J.Sekiguchi: "Nilpotent orbits of the complex symmetric pairs whose restricted root systems are of type F4"Sophia Kokyuroku in Math.. 45. 39-56 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] D. Z. Djokovic, N. Lemire and J.Sekiguchi: "The closure ordering of adjoint nilpotent orbits in so(p,q)"Tohoku Math. J.. 53. 395-442 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] E. Bannai, M., Koike, A. Munemasa and J. Sekiguchi: "Some results on modular groups-Subgroups of the modular group whose ring of modular forms is a polynomial ring"Advanced Studies in Pure Math.. 32. 245-254 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] D. Z. Djokovic and J. Sekiguchi: "Mapping of nilpotent orbits under embeddings of real forms of exceptional complex Lie algebras"Asian J. Math.. 6. 409-432 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] D. Z. Djokovic and J. Sekiguchi: "Nilpotent orbits of the complex pairs whose restricted root systems are of type F_4"Theory ofl Lie Groups and Manifolds, by R. Miyaoka and H. Tamaru, Sophia Kokyuroku in Math.. No.45. 39-56 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] D.Z.Djokovic, J.Sekiguchi: "Mapping of nilpotent orbits under embedding of real forms of exceptional complex Lie algebras"Asian J.Math.. 6. 409-431 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] D.Z.Djokovic, J.Sekiguchi: "Nilpotent orbits of complex symmetric pairs whose restricted root systems are of type F4"Theory of Lie groups and manifolds (上智大学数学講究録). 45. 39-56 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] E.Bannai, M.Koike, A.Munemasa, J.Sekiguchi: "Some results on modular forms"Advanced Studies in Pure Math.. 32. 245-254 (2001)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi