• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Units groups generated by special values of Siegel modular functions

Research Project

Project/Area Number 13640046
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionWaseda University

Principal Investigator

KOMATSU Keiichi  Waseda University, School of Science and Engineering, Professor, 理工学部, 教授 (80092550)

Co-Investigator(Kenkyū-buntansha) HASHIMOTO Kiichiro  Waseda University, School of Science and Engineering, Professor, 理工学部, 教授 (90143370)
Project Period (FY) 2001 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥2,700,000 (Direct Cost: ¥2,700,000)
Fiscal Year 2003: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2002: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2001: ¥1,100,000 (Direct Cost: ¥1,100,000)
Keywordsabelian extension / Birch-Swinnerton-Dyer conjecture / elliptic curve / unit / Jacobian variety / Siegel modular function / ray class field / Siegel modular function / L-関数 / 単数群 / 類数 / Kroneckerの極限公式
Research Abstract

In 1976, Coates and Wiles gave large improvement to Birch-Swinnerton-Dyer conjecture for some elliptic curves with complex multiplication by using elliptic units in abelian extensions of imaginary quadratic fields. Main purpose of car investigation is to consider Birch-Swinnerton-Dyer conjecture of the Jacobian variety of some genus-2-curves with complex multiplications.
In our investigation, we obtained the following :
We put ζ=e^(2πi)/(13) and α=5+5^3+5^9. Then the field k=Q(α) is the CM-field
corresponding to the Jacobian variety J(C) of the curve C :
y^2=x^5-156x^4+10816x^3-421824x^2+8998912x-8042776.
We construct unit groups in abelian extensions of k by special values of Siegel modular functions at a CM-point corresponding to J(C). moreover we write the values of Hecke L-functions associated to the above abelian fields using units given by Siegel modular functions.

Report

(4 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • 2001 Annual Research Report
  • Research Products

    (11 results)

All Other

All Publications (11 results)

  • [Publications] Takashi Fukuda, Keiichi Komatsu: "On Minkowski units constructed by special values of Siegel modular functions"Theorie des Nombres de Bordeaux. 15. 133-140 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 小松啓一, 福田隆: "Noncyclotomic Z_p-extensions of imaginary quadratic fields"Experimental Mathematics. 11. 469-475 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 小松啓一, 福田隆: "An application of Siegel modular functions to Kronecker's limit formula"Algorithmic Number Theory. 2369. 108-119 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 小松啓一, 福田隆: "On Iwasawa λ_3-variants of cyclic cubic fields of prime conductor"Mathematics of Computation. 236. 1707-1712 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Takeshi Fukuda, Keiichi Komatsu: "On Minkowski units constructed by special values of Siegel modular functions"Theorie des Nombres de Bordeaux. 15. 133-140 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Takeshi Fukuda, Keiichi Komatsu: "Noncyclotomic Z_p-extensions of Imaginary quadratic fields"Experimental Mathematics. 11. 469-475 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Takeshi Fukuda, Keiichi Komatsu: "An-application of Siegel modular functions to Kronecker limit formula"Algorithmic Number Theory. 2369. 108-119 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Takeshi Fukuda, Keiichi Komatsu: "On Iwasawa λ_3-invariants of cyclic cubic fields of prime conductor"Mathematics of Computation. 236. 1707-1717 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Keiichi Komatsu, Takashi Fukuda: "On Minkowski units constructed by special values of Siegel modular functions"Journal de Theorie des Nombres de Bordeaux. 15. 133-140 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 小松啓一, 福田隆: "An application of Siegel modular functions to Kroneckers limit formula"Algorithmic Number Theory LNCS (Springer). 2369. 108-119 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Fukuda, K.Komatsu: "On Iwasawa λ_3-invariants of cyclic cubic fields of prime conductor"Mathematics of computation. 70・236. 1707-1712 (2001)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi