• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Integrable geodesic flows and Masloy's quantization condition

Research Project

Project/Area Number 13640054
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionHOKKAIDO UNIVERSITY

Principal Investigator

KIYOHARA Kazuyoshi  Hokkaido Univ., Grad. School of Sci., Assoc. Prof., 大学院・理学研究科, 助教授 (80153245)

Co-Investigator(Kenkyū-buntansha) FURUHATA Hitoshi  Hokkaido Univ., Grad. School of Sci., Lect., 大学院・理学研究科, 講師 (80282036)
ISHIKAWA Goo  Hokkaido Univ., Grad. School of Sci., Assoc. Prof., 大学院・理学研究科, 助教授 (50176161)
IZUMIYA Shuichi  Hokkaido Univ., Grad. School of Sci., Prof., 大学院・理学研究科, 教授 (80127422)
IGARASHI Masayuki  Sci. Univ. of Tokyo, Fac. Ind. Sci. of Tech., Lect., 基礎工学部, 講師 (60256675)
SHIMADA Ichirou  Hokkaido Univ., Grad. School of Sci., Assoc. Prof., 大学院・理学研究科, 助教授 (10235616)
Project Period (FY) 2001 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,900,000)
Fiscal Year 2002: ¥1,900,000 (Direct Cost: ¥1,900,000)
Fiscal Year 2001: ¥2,000,000 (Direct Cost: ¥2,000,000)
KeywordsIntegrable geodesic flow / Integrable system / Periodic geodesic flow / Zoll / Hamiltonian mechanics / Symplectiic geometry / Liouville manifolds / Eillipsoid / Zoll計量 / バミルトン力学
Research Abstract

We constructed a continuous family of riemanninan metrics on 2-sphere whose geodesic flows possess first integrals of fiber-degree k, for every k greater than 2. They are the first examples, exect the cases where k=3,4, due to Bolsinov and Fomenko. Moreover, the constructed manifolds have the property that every geodesic is closed. Therefore they are conrete examples of the manifolds that Guillemin showed their existence in an abstract manner.
We also investigated the structures of Kahler-Liouville manifolds of general type, I.e., not necessarlly of type (A). As a consequence, we showed that every compact, proper Kahler-Liouville manifold has a bundle structure such that the fiber is a Kahler-Liouville manifold whose geodesic flow is integrable, and the base is (locally) a product of one-dimensional Kahler manifolds. Also, we obtain another class, called of type (B), of Kahler-Liouville manifolds whose geodesic flows are integrable. This class had already appeared in the study of fiber bundle structure of type (A) manifolds, but we now obtained its intrinsic definition.
Also, we investigated local structures of Hermite-Liouville manifolds and basically clarifled them. Moreover, we construct the structure of Hermite-Liouville manifolds on complex projective spaces. The way of construction is similar to that of a Kahler-Liouvlle manifold, I.e., a complexification of a real Liouville manifold. However, in the Hermite case, plural Liouville manifolds produce one Hermite-Liouville manifold. Therefore, we obtain quite many examples of integrable geodesic flows in this way.

Report

(3 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • Research Products

    (24 results)

All Other

All Publications (24 results)

  • [Publications] I.Shimada: "On Zariski-van Kampen theorem"Canad. J. Math.. (in press).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Kiyohara: "On Kahler-Liouville manifolds"Contemp. Math.. 308. 211-222 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Yamaguchi: "Geometry of higher order differential equations of finite type associated with symmetric spaces"Adv. Studies in Pure Math.. 37. 397-458 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Izumiya: "Singularities of ruled surfaces in R^3"Math. Proc. Camb. Phil. Soc.. 130. 1-11 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] G.Ishikawa: "Solution surfaces of the Monge-Ampere equation"Diff. Geom. Appl.. 14. 113-124 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Kiyohara: "Two-dimensional geodesic flows having first integrals of higher degree"Math. Annalen. 320. 487-505 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K. Kiyohara: "On Kahler-Liouville manifolds"Contemp. Math.. 308. 211-222 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K. Yamaguchi: "Geometry of higher order differential equations associated with symmetric spaces"Adv. St. Pure Math.. 37. 397-485 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S. Izumiya: "Singularities of ruled surfaces in R^3"Math. Proc. Camb. Phil. Soc.. 100. 1-11 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] G. Ishikawa: "Solution surfaces of the Monge-Ampere equation"Diff, Geom. Appl.. 14. 113-124 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K. Kiyohara: "Two-dimensional geodesic flows having first integrals of higher degree"Math. Ann.. 320. 487-505 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] I. Shimada: "Canad. J. Math., (in press)"On Zariski-van Kampem Theorem.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Yamaguchi: "Characterization of Hermitian symmetric spaces by fundamental forms"Dnke J.. (in press).

    • Related Report
      2002 Annual Research Report
  • [Publications] K.Yamaguchi: "Geometry of higher order differential equations of finite type associated with symmetric spaces"Adv. Studies in Pure Math.. 37. 397-458 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] K.Kiyohara: "On Kahler-Liouville manifolds"Contemp.Math.. 308. 211-222 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] S.Izumiya: "Ruled front and developable surfaces"Publ.Mathematicae(Debrecen). 61. 139-144 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] G.Ishikawa: "Lagrange mappings of the first open Whitney umbrella"Pacific J.Math.. 203. 115-138 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] G.Ishikawa: "Submanifolds with degenerate Gauss mappings in spheres"Adv.Studies in Pure Math.. 37. 115-149 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] K.Kiyohara: "Two-dimensional geodesic flows having first integrals of higher degree"Math.Annalen. 320. 487-505 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] S.Izumiya: "Singularities of ruled surfacis in R^3"Math.Proc.Camb.Phil.Soc.. 130. 1-11 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] S.Izumiya: "Multivalued solutions to the eikonal equation in stratified media"Quarterly of applied math.. 54. 365-390 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] G.Ishikawa: "Solution surfaces of the Monge-Anpere equation"Diff.Geom.Appl.. 14. 113-124 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] I.Shimada: "Classification of extremal elliptic K^3 surfaces and fundamental groups of open K^3 surfaces"Nagoya J. Math.. 161. 23-54 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] I.Shimada: "Lattices of algebraic cycles on Fermat varieties in positive characteristics"Proc.London Math.Soc.. 82. 131-172 (2001)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi