• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometric structures and differential equations on filtered manifolds

Research Project

Project/Area Number 13640071
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionNara Women's University

Principal Investigator

MORIMOTO Tohru  Nara Women's University, Fac.of Sciences, Prof., 理学部, 教授 (80025460)

Co-Investigator(Kenkyū-buntansha) SATO Hajime  Nagoya Univ., graduate sch.of Math., Prof., 多元数理, 教授 (30011612)
MACHIDA Yoshinori  Numazu Tech.College, Asso.Prof., 助教授 (90141895)
ISHIKAWA Goo  Hokkaido Univ., graduate sch.of Sci., Asso.Prof., 理学研究科, 助教授 (50176161)
KISO Kazuhiro  Ehime Univ., Fac.of Sciences, Prof., 理学部, 教授 (60116928)
AGAOKA Yoshio  Hiroshima Univ., Fac.of Int.Arts, Asso.Prof., 総合科学部, 助教授 (50192894)
Project Period (FY) 2001 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥2,900,000 (Direct Cost: ¥2,900,000)
Fiscal Year 2003: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2002: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2001: ¥1,000,000 (Direct Cost: ¥1,000,000)
Keywordsfiltered manifold / nilpotent geometry / nilpotent analysis / subriemannian manifold / Cartan connection / サブリーマン構造 / サブリーマン接触多様体 / モンジュ・アンペール方程式 / 幾何構造 / カルノ・カラテオドリー計量
Research Abstract

From the viewpoint of nilpotent geometry and analysis, we have been developing general theories on geometric, structures and differential equations on filtered manifolds. More recently, as applications of these theories, we have been carrying detailed studies on various concrete geometric structures. In particular, applying the general theory of Morimoto to subriemannian geometry, we have obtained the following remarkable theorem : There exists a canonical Cartan connection associated with a subriemannian manifold satisfying Hormander condition and having constant first order approximation.
We have also determined, up to quotient by discrete groups, the homogeneous subriemannian contact manifolds whose automorphism groups are of maximal dimension. The automorphism groups are also classified into three isomorphic classes.

Report

(4 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • 2001 Annual Research Report
  • Research Products

    (27 results)

All Other

All Publications (27 results)

  • [Publications] Y.Agaoka, E.Kaneda: "Strongly orthogonal subsets in root systems"Hokkaido Math.J.. 31. 107-136 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] G.Ishikawa, S.Janeczko: "Symplectic bifurcations of plane curves and isotropic liftings"Quarterly Journal of Mathematics. 54. 73-102 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] G.Ishikawa, T.Morimoto: "Solution surfaces of Monge-Ampere equations"Differential Geometry and its Applications. 14. 113-124 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Morimoto: "Lie algebras, geometric structures and differential equations on filtered manifolds"Advanced Studies in Pure Mathematics. 37. 203-252 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Sato: "Contact geometry of second order partial differential equations"Sugaku Expositions. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Morimoto, et al.: "Lie Groups, Geometric Structures and differential Equations"Mathematical Society of Japan. 493 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Y.Agaoka, E.Kaneda: "Strongly orthogonal subsets in root systems"Hokkaido Math.J.. Vol.31,No.1. 107-136 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] G.Ishikawa, S.Janeczko: "Symplectic bifurcations of plane curves and isotropic liftings"Quarterly Journal of Mathematics. 54. 73-102 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] G.Ishikawa, T.Morimoto: "Solution surfaces of the Monge-Ampere equation"Differential Geometry and its Applications. 14. 113-124 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Morimoto: "Lie algebras, geometric structures and differential equations on filtered manifolds"Advanced Studies in Pure Mathematics. 37. 203-252 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Sato: "Contact geometry of second order partial differential equations"Sugaku Expositions. (to appear.).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Morimoto et al.edit: "Lie Groups, Geometric Structures and Differential Equations -One Hundred Years after Sophus Lie-"Advanced studies in Pure Mathematics 37, Mathematical Society of Japan. (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Y.Agoaoka, E.Kaneda: "A lower bound for the curvature invariant P(G/K) associated with a Riemannian symmetric space G/K"Hokkaido Math.J.. 33. 153-184 (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] G.Ishikawa: "Perturbations of Caustics and Fronts"Banach Center Publications. 62. 101-116 (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] G.Ishikawa, S.Janeczko: "Symplectic bifurcations of plane curves and isotropic liftings"Quarterly Journal of Mathematics. 54. 73-102 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] H.Sato, T.Ozawa: "Conformal Schwarzian Derivatives and Differential Equations"Proceedings of "Geometry, Integrability and Quantization". Coral Press. 271-283 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] H.Suzuki, H.Sato: "Symplectic analogue of Singer's theorem"Proceeding of the 2003 Nagoya conference. (発表予定).

    • Related Report
      2003 Annual Research Report
  • [Publications] T.Morimoto: "Lie algebras, Geometric Structures and Differential Equations on Filtered Manifolds"Advanced Studies in Pure Mathematics. 37. 205-252 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] G.Ishikawa: "Submanifolds with Degenerate Gauss Mappings in Spheres"Advanced Studies in Pure Mathematics. 37. 115-150 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Ozawa, H.Sato: "Contact Transformations and their Schwarzian Derivatives"Advanced Studies in Pure Mathematics. 37. 337-366 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Y.Ueno, Y.Agaoka: "Classification of tilings of the 2-dimensional sphere by congruent triangles"Hiroshima Math. J.. 32. 463-540 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Morimoto (edit.): "Lie Groups, Geometric Structures and Differential Equations -One Hundred Years after Sophus Lie -"Mathematical Soc. of Japan. 493 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] G.Isikawa, T.Morimoto: "Sulutin on surbaces of Monge-Ampere egurtions"Diff. Geometry and its Applications. 14. 113-124 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] T.Morimoto: "Lie algebras, geometric stsuctures and Differential egnations on filtered menifulds"Advanced Studies in Pure Math.. (発表予定).

    • Related Report
      2001 Annual Research Report
  • [Publications] T.Ozawa, H.Sato: "Contact transformations and Heir Schuarzian derrvaives"Advanced Studies in Pure Math.. (発表予定).

    • Related Report
      2001 Annual Research Report
  • [Publications] Y.Agaoka: "Unigueness of left invariant sympletic structures on the offine. Lie group"Proc. Amer. Math. Soc.. 129. 129-133 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Y.Agaoka, E.Kaneda: "Slrongly ordhogonal subsets in root systems"Hokkaido Math. J.. 31. 107-136 (2002)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi