• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A topological and analytical study on three dimensional singular complex projective hypersurfaces

Research Project

Project/Area Number 13640083
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKagoshima University

Principal Investigator

TSUBOI Shoji  Kagoshima University, Faculty of Science, Professor, 理学部, 教授 (80027375)

Co-Investigator(Kenkyū-buntansha) OHMOTO Toru  Kagoshima University, Faculty of Science, Associate Professor, 理学部, 助教授 (20264400)
YOKURA Shoji  Kagoshima University, Faculty of Science, Professor, 理学部, 教授 (60182680)
MIYAJIMA Kimio  Kagoshima University, Faculty of Science, Professor, 理学部, 教授 (40107850)
NAKASHIMA Masaharu  Kagoshima University, Faculty of Science, Professor, 理学部, 教授 (40041230)
OBITSU Kunio  Kagoshima University, Faculty of Science, Associate Professor, 理学部, 助教授 (00325763)
Project Period (FY) 2001 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥3,400,000 (Direct Cost: ¥3,400,000)
Fiscal Year 2002: ¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 2001: ¥1,800,000 (Direct Cost: ¥1,800,000)
KeywordsSingular hypersurfaces / Ordinary singularities / Normalizations / Chem numbers / Isolated rational singularities / Mixed Hodge structures / Rational integrals of the 2^<nd> kind / Poincare residue map / 3次元複素射影超曲面 / 非特異正規化モデル / セグレ類 / 交点理論 / Θ係数オイラーポアンカレ特性数 / 3次元特異複素射影超曲面 / オイラー数 / 通常3重点の退化型 / 3次元剛直孤立特異点 / グレブナー基底 / イデアルの自由分解
Research Abstract

(1) Let Y be an algebraic hypersurface with ordinary singularities, i.e., ordinary n-ple points, ordinary cuspidal points and stationary points, in the 4-dimensional complex projective space, and let X be its normalization. For such Y and X, we have proved numerical formulas which describe the Chem numbers c_1(X)^3, c_1(X)c_2(X), c_3(X) of X in terms of numerical characteristics of Y and its singular locus. As an application, we have derived a numerical formula which gives the Euler-Poincare characteristic of X with coefficients in the sheaf of holomorphic vector fields on X.
(2) We have given an example of hypersurfaces which have ordinary n-ple points (2≦n≦4), ordinary cuspidal points and degenerate ordinary triple points only as singularities, and whose normalizations have isolated rational quadruple points only as singularities. From Schlessinger's criterion, it follows that these isolated singular points are rigid under small deformations.
(3) For a (n+1)-dimensional complex algebraic manifold X, embedded in a projective space, and its non-singular hyperplane section Y which is sufficiently ample, we have proved the following:
(a) F^kH^p(X-Y,C)【similar or equal】I^p _k(X,(p+1)Y), F^kH^p(X,C)_0【similar or equal】I^p _k(X,(p+1)Y)_0 (0≦k≦p, 0≦p≦n+1),
(b) F^kGr^<w[q]> _qH^p(X-Y,C)【similar or equal】I^p _k(X,(p+1)Y)_0, F^kGr^<w[q]> _<q+1>H^p(X-Y,C)【similar or equal】 I^p _k(X,(p+1)Y)/I^p _k(X,(p+1)Y)_0 (0≦k≦p, 0≦p≦n+1),
(c) F^kH^n(Y,C)_0 【similar or equal】Res(I^<n+1> _<k+1>(X,(n+2)Y))【symmetry】r*(I^n _k(X,(n+1)Y')_0,
where H^p(X,C)_0 and H^p(Y,C)_0 denote the p-th cohomology of X and Y, respectively, and I^p _k(X,(p+1)Y) denotes the De Rham cohomology of closed rational differential forms which has poles of order p-k+1 at most along Y, I^p _k(X,(p+1)Y)_0 the subspace of I^p _k(X,(p+1)Y) generated by closed rational differential forms of the second kind, and Y' a sufficiently ample hyperplane section of X, intersecting with X transversely.

Report

(3 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • Research Products

    (24 results)

All Other

All Publications (24 results)

  • [Publications] S.Tsuboi: "On certain hypersurfaces with non-isolated singularities in P^4(C)"Pro.Japan Aca.. 79A, No.1. 1-4 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Miyajima: "Deformation theory of CR structures on a boundary of normal isolated singularities"Proceedings of the Japan-Korea joint Workshop in Math.2001, Department of Mathematics, Yamaguchi Univ.. 115-124 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Yokura(with L.Ernstrom): "On bivariant Chern-Schwartz-MacPherson classes with values in Chow groups"Selecta Mathematica. Vol.8,No.1. 1-25 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Yokura: "Bivariant theories constructible functions and Grothendieck transformations"Topology and Its Application. 123. 283-296 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Yokura: "Remarks on Ginzburg's Bivariant Chern classes"Proc.Amer.Math.Soc.. 130. 3645-3471 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K.Obitsu: "The asymptotic behavior of Eisenstein series and a comparison of The Weil-Petersson and the Zograf-Takhtajan metrics"Publ.RIMS.Kyoto Univ.. 37. 459-478 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Shoji Tsuboi: "On certain hypersurfaces with non-isolated singularities in P^4c"Proc. Japan Acad.. 79A-1. 1-4 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Shoji Yokura, (With L. Emstrom): "On bivariant Chem-Schwartz-MacPherson classes with values in Chow groups"Selecta Mathematica. Vol. 8, No. 1. 1-25 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Shoji Yokura: "Bivariant theories of constructible functions and Grothendieck transformations"Topology and its Applications. Vol. 123. 283-296 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Shoji Yokura: "Remarks on Ginzburg's bivariant Chem classes"Proc. Amer. Math. Soc.. Vol. 130. 3465-3471 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Kunio Obitsu: "The asymptotic behavior of Eisenstein series and a comparison of the Weil-Petersson and the Zograf-Takhtajan metrics"Publ. RIMS. Kyoto Univ.. 37. 459-478 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Kimio Miyajima: "Deformation theory of CR structures on a boundary of normal isolated singularities, in Proceedings of the Japan-Korea Joint Workshop in Mathematics "Complex Analysis and Related Topics""Department of Mathematics, Yamaguchi University. 115-124 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Tsuboi: "On certain hypersurfaces with non-isolated singularities in P^4(C)"Pro. Japan Acad.. 79A, No.1. 1-4 (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] K.Miyajima: "Deformation theory of CR structures on a boundary of normal isolated singularities"Proceedings of the Japan-Korea Joint Workshop in Math. 2001, Department of Mathematics, Yamaguchi Univ.. 115-124 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] K.Miyajima: "CR description of the formal deformations of quasi-homogeneous singularities"Selected Topics in Cauchy-Riemann Geometry, Quaderni di Matematica (Universita di Napoli, Caserta). (to appear). 24 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] S.Yokura, L.Ernstrom: "On bivariant Chern-Schwartz-MacPherson classes with values in Chow ~rouns"Selecta Mathematica. Vol.8, No.1. 1-25 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] S.Yokura: "Bivariant theories of constructible functions and Grothendieck transformations"Topology and Its Application. 123. 283-296 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] S.Yokura: "Remarks on Ginzburg's bivariant Chern classes"Proc. Amer. Math. Soc.. 130. 3465-3471 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] S.Tsuboi: "The Euler number of the non-singular normalization of an algebraic threefold with ordinary singulaities."Procccdings of the International Symposium on Singularity Theory and its Applications, Beijing University of Chemical Technology. 113-119 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] S.Tsuboi: "A Certain Degenerate Ordinarity Singulary of Dimension Three"Finite or infinite Dimensional Complex Analysis, Shandon Science and Technology Press. 223-228 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] K.Miyajima: "Deformation theory of CR structures on a boundary of normal isolated singularities"Proceeings of the Japan-Korea Join Workshop on Complex Analysis and Related Topics. 115-124 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] K.Miyajima: "CR descripion of the formal deformations of uasi-homgeneous singularities"Quaderni di Matematica, Series ed.by Dipartimento di Matematica, Seconda Universita di Napoli. (in press). 24 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] S.Yokura: "An application of bivariant theory to Milnor classes"Topology and Its Applications. 115. 43-61 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] K.Obitsu: "The asymptoic behavior of Eisenstein series and a comparison of the Weil-Petersson and the Zograf-Takhtajan metrics"Pub1.RIMS.Kyoto Univ.. 37. 459-478 (2001)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi