• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Homogeneous complex manifolds and related problems

Research Project

Project/Area Number 13640091
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionRitsumeikan University

Principal Investigator

NAKAJIMA Kazufumi  Ritsumeikan Univ., Fac. Science and Engineering, Professor, 理工学部, 教授 (10025489)

Co-Investigator(Kenkyū-buntansha) SHIN'YA Hitoshi  Ritsumeikan Univ., Fac. Science and Engineering, Professor, 理工学部, 教授 (70036416)
NARUKI Isao  Ritsumeikan Univ., Fac. Science and Engineering, Professor, 理工学部, 教授 (90027376)
FUJIMURA Shigeyoshi  Ritsumeikan Univ., Fac. Science and Engineering, Professor, 理工学部, 教授 (30066724)
KAGAWA Takaaki  Ritsumeikan Univ., Fac. Science and Engineering, Associate Professor, 理工学部, 助教授 (90298175)
Project Period (FY) 2001 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥3,400,000 (Direct Cost: ¥3,400,000)
Fiscal Year 2002: ¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 2001: ¥1,800,000 (Direct Cost: ¥1,800,000)
Keywordscomplex manifolds / Kahler manifolds / homogeneous spaces / semi-simple Lie groups / ケーラー代数
Research Abstract

By Borel or Koszul, every homogeneous Kahler manifold of a semi-simple Lie group G is a coset space of G by C(Z), the centralizer of an element Z of the Lie algebra g of G. Conversely, let G be a semi-simple Lie group and Z an element of g and consider the factor space G/C(Z). We have obtained
1. a necessary and sufficient condition of Z for the homogeneous space G/C(Z) admits a G-invariant Kahler structure.
Secondly, under the condition that G is simple and compact
2. the maximality of C(Z) implies dimC(Z) = 1 and in this case, the Kahler structure of G/C(Z) is unique up to trivial changes of complex structures and Kahler metrics.
In non-compact case, dimC(Z) = 1 if and only if the homogeneous Kahler manifold is symmetric. The rerult 2 imples the existence of non-symmetric homogeneous Kahler manifolds G/C(Z) with dimC(Z) = 1.

Report

(3 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • Research Products

    (7 results)

All Other

All Publications (7 results)

  • [Publications] Takaaki Kagawa: "Determination of elliptic curves with everywhere good reduction over real quadratic fields Q(√<3p>)"Acta Arith.. 96. 231-245 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Hitoshi Shin'ya: "Spherical matrix functions arid Banach representability for locally compact motion groups"Japanese Journal of Mathematics. 28. 163-201 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Takaaki Kagawa: "Determination of elliptic curves with everywhere good reduction over real quadratic fields Q(√<3p>)"Acta Arith.. 96. 231-245 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Hitoshi Shin'ya: "Spherical matrix functions and Banach representability for locally compact motion groups"Japanese Journal of Mathematics. 28. 163-201 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Hitoshi Shin'ya: "Spherical matrix functions and Banach representability for locally compact motion groups"Japanese Journal of Mathematics. 28巻2号. 163-201 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Takaaki Kagawa: "Elliptic curves over Q(√<2>) with good reduction outside √<2>"Mem. Inst. Sci. Engrg. Ritsumeikan Univ.. 60. 63-79 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Hitoshi Shin'ya: "Spherical matrix functions and Banach representability for locally compact motion groups"to apear in Japanese Journal of Mathematics.

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi