• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of the mathematical foundation of energy level statistics.

Research Project

Project/Area Number 13640100
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionUniversity of Tsukuba

Principal Investigator

MINAMI Nariyuki  University of Tsukuba, Institute of Mathematics, Associated Professor, 数学系, 助教授 (10183964)

Co-Investigator(Kenkyū-buntansha) AOSHIMA Makoto  University of Tsukuba, Institute of Mathematics, Assosiated Professor, 数学系, 助教授 (90246679)
MORITA Jun  University of Tsukuba, Institute of Mathematics, Professor, 数学系, 教授 (20166416)
AKAHIRA Masafumi  University of Tsukuba, Institute of Mathematics, Professor, 数学系, 教授 (70017424)
MIKAWA Hiroshi  University of Tsukuba, Institute of Mathematics, Assistant Professor, 数学系, 講師 (10219602)
TASAKI Hiroyuki  University of Tsukuba, Institute of Mathematics, Associated Professor, 数学系, 助教授 (30179684)
籠谷 恵嗣  筑波大学, 数学系, 助手 (40323258)
土居 伸一  筑波大学, 数学系, 助教授 (00243006)
Project Period (FY) 2001 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥3,400,000 (Direct Cost: ¥3,400,000)
Fiscal Year 2002: ¥1,300,000 (Direct Cost: ¥1,300,000)
Fiscal Year 2001: ¥2,100,000 (Direct Cost: ¥2,100,000)
Keywordsrandom Schrodinger operators / spectral statistics / branching processes / Galton-Watson trees / ランダムなシュレーディンガー作用素 / エネルギー準位統計 / 量子カオス / ランダム行列 / 分岐過程
Research Abstract

1. The definition of one-dimensional Schrodinger operators with singular potentials and its application to random systems : In 1994, H.P. McKean considered the Schrodinger operator with white noise potential on a finite interval, and investigated the probability distribution of its first eigenvalue, but did not mention the fundamental question of the definition of operators with singular potentials like white noise. The formulation of a Schrodinger operator which has as its potential the formal derivative of a continuous function had been already given by Fukushima, Nakao and Minami. But each of their methods had some technical dificulty when applied to the present situation. In our study, we found that the recent concise formulation due to Savchuk and Shkalikov (1999) is effective for our purpose. In particular, their notion of "quasi-derivative "enabled us to prove the Sturm's oscillation theorem needed in filling the gap in McKean's theory. This work was done in collaboration with K. Nagai.
2. The distribution of the number of vertices of a Galton-Watson tree : As is shown e.g. the recent work by A. Khourunzhy (Adv. In Appl. Probab. Vol.33, No.l (2001) 124-140), one needs to count the number of vertices of random trees in order to study the fluctuation of the spectrum of random matrices. On the other hand, random trees are obtained as the trajectory of a Galton- Watson process (a discrete time branching process). We shall call this type of trees the Galton-Watson trees. Continuing the pioneering work of R. Otter (1949), we obtained some new results on the number of vertices of Galton- Watson trees.

Report

(3 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report

Research Products

(28 results)

All Other

All Publications (28 results)

  • [Publications] N.Minami (with T.Hiratsuka): "Derivation of Wigner's semi-circle law for a class of matrix ensemble via Brownian motion"Tsukuba J. Math.. Vol.25,No.2. 442-464 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] M.Akahira (with K.Takeuchi): "Information inequalities in a family of uniform distributions"Ann. Inst. Stat. Math.. Vol.53,No.3. 427-435 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] M.Akahira: "Confidence interval for the difference of means ; application to Behrens-Fisher type problem"Statist. Papers. Vol.43,No.27. 273-284 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] J.Morita (with S.Berman, Y.Yishii): "Some factorizations in universal enveloping algebras of three dimensional Lie albebras and generalizaations"Canad. Math. Bull.. Vol.45,No.4. 525-536 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] M.Aoshima (with Y.Takada, M.S.Srivastava): "A two-stage procedure for estimating a linear function of k multinomial mean vectors when covariance matrices are known"Journal of Statistical Planning and Infernce. Vol.100. 109-119 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 田崎博之: "等質空間の部分多様体の積分幾何学"数学. 54巻3号. 280-291 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Doi (A.Iwatsuka, T.Mine): "the uniqueness of the integarted density of states for the Schrodinger operators with magnetic fields"Math. Z.. Vol.237,No.2. 335-371 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] H.Mikawa: "On primes in arithmetic progressions"Tsukuba J. Math.. Vol.25,No.1. 121-153 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] N. Minami, T. Hiratsuka: "Derivation of Wigner's semi-circle law for a class of matrix ensemble via Brownian motion"Tsukuba J. Math.. 25 No.2. 442-464 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] M. Akahira, K. Takeuchi: "Information inequalities in a family of uniform distributions"Ann. Inst. Stat. Math. 53 No.3. 427-435 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] M. Akahira: "Confidence interval for the difference of means ; application to Behrens-Fisher type problem"Statist. Papers. 43 No.2. 273-284 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] J. Morita, S. Berman, Y. Yishii: "Some factorizations in universal enveloping algebras of three dimensional Lie albebras and generalizations"Canad. Math. Bull.. 45 No.4. 525-536 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] M. Aoshima, Y. Takada, M.S. Srivastava: "A two-stage procedure for estimating a linear function of k multinomial mean vectors when covariance matrices are known"Journal of Statistical Planning and Inference. 100. 109-119 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] H. Tasaki: "Integral geometry for submanifolds in homogeneous spaces.(in Japanese)"Sugaku. 54 No.3. 280-291 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.Doi, A. Iwatsuka, T. Mine: "The uniqueness of the integrated density of states for the Schrodinger operators with magnetic fields"Math. Z. 237 No.2. 335-371 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] H. Mikawa: "On primes in arithmetic progressions"Tsukuba J. Math. 25 No.l. 121-153 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Akahira, M.: "Confidence intervals for the difference of means ; application to the Behcens-Fisher type problem"Statist. Papers. 43・2. 273-284 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Akahira.M., Mnkhopadhyay, N.: "Two-stage estimation of a linear function of normal means with second-order approximations"Segnontial Anal.. 21・3. 109-144 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Aoshima, M., Gorinda*ajul*, Z.: "Fixed-width confidence interval for a lognormal mean"Int. J. Math. Sci.. 29・3. 143-153 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Berman, S., Morita, J., Yoshii, Y.: "Some factorizations in universal envelopping algebras of three dimensional Lie algebras and generalizations"Canad. Math. Bull.. 45・4. 525-536 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 田崎 博之: "等質空間の部分多様体の積分幾何学"数学. 54・3. 280-291 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Kang, H.J., Tasaki, H.: "Integral geometry of real surfaces in the complex projective plane"Geom. Dedicata. 90. 99-106 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T. Hiratsuka, N. Minami: "Derivation of Wigner's semi-circle law for a class of matrix ensembles via Brownian motion"Tsukuba Journal of Mathematics. Vol.25, No.2. 443-464 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] S. Doi, A. Iwatsuka, T. Mine: "The uniqueness of the integrated density of states for the Schroedinger operators with magnetic fields"Mathematische Zeitschrift. Vol.237 No.2. 335-371 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] H. Mikawa: "On primes in arithmetic progressions"Tsukuba Journal of Mathematics. Vol.25 No.1. 121-153 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] H. Tasaki: "Integral geometry of real surfaces in complex projective spaces"Tsukuba Journal of Mathematics. Vol.25 No.1. 155-164 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] M. Aoshima, Y. Takada, M. S. Srivastava: "A two-stage procedure for estimating a linear function of k multinomial mean vectors when covariance matrices are known"Journal of Statistical Planning and Inference. Vol.100. 109-119 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] M. Akahira, K. Takeuchi: "Information inequalities in a family of uniform distributions"Annals of Institute of Statistical Mathematics. Vol.53 No.3. 427-435 (2001)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-03-31   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi