• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Tauberian theorems of exponential type and its applications to probability theory

Research Project

Project/Area Number 13640104
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionOchanomizu University

Principal Investigator

KASAHARA Yuji  Ochanomizu University, Faculty of Science, Dept.Info.Sci., Professor, 理学部, 教授 (60108975)

Co-Investigator(Kenkyū-buntansha) YOSHIDA Hiroaki  Ochanomizu University, Faculty of Science, Dept.Info.Sci., Professor, 理学部, 教授 (10220667)
KOSUGI Nobuko  Tokyo Univ., Marine Science and Technology, Ass.Professor, 海洋工学部, 助教授 (20302995)
Project Period (FY) 2001 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥3,300,000 (Direct Cost: ¥3,300,000)
Fiscal Year 2004: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 2003: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2002: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2001: ¥900,000 (Direct Cost: ¥900,000)
KeywordsTauberian theorem / Laplace transform / Legendre transform / ブラウン運動 / 逆正弦法則 / Bessel過程 / 拡散過程 / Fenchel-Legendre変換
Research Abstract

・A theorem that treats such relationship is called a Tauberian theorem. In our research we found that a Tauberian theorem of exponential type is essentially equivalent to the inverse problem for the Fenchel-Legendre transformation. We also obtained a condition for the latter problem. The result is useful when we treat functions without assuming smoothness.
・We also found that the same idea is applicable to the following problem : Limit theorems for sums of independent, identically distributed random variables are classical and it known that we need non-linear normalization if the tail probability is very heavy. Such cases appears, for example, in excursion intervals of two-dimensional random walk. We proved that in such cases the sum has an asymptotic expansion using order statistics.
・It is well known that the time a Brownian motion spends on the positive side obeys the arc-sine law. We studied similar results for more general diffusions. Although we cannot write down the explicit law of the time spent on the positive side, we obtained the relationship between the asymptotic behavior around 0 of the distribution function and that of the speed measure. We next obtained results on the asymptotic behavior of the distribution function of the time spent on the positive side in the case where the speed measure increases in exponential order. Our proof is based on the idea we used in the theory of Tauberian theorems of exponential type.

Report

(5 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • 2002 Annual Research Report
  • 2001 Annual Research Report
  • Research Products

    (27 results)

All 2005 2004 2003 2002 2001 Other

All Journal Article (16 results) Publications (11 results)

  • [Journal Article] On a generalized arc-sine law for one-dimensional diffusion processes2005

    • Author(s)
      Kasahara, Y, Yano, Y
    • Journal Title

      Osaka J.Math. 42

      Pages: 1-10

    • NAID

      120005986898

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Occupation time theorems for a class of one-dimensional diffusion processes2005

    • Author(s)
      Kasahara, Y, Watanabe, S
    • Journal Title

      Periodica Math.Hungarica (to appear)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On a generalized arc-sine law for one-dimensional diffusion processes.2005

    • Author(s)
      Kasahara, Y., Yano Y.
    • Journal Title

      Osaka J.Math. 42

      Pages: 1-10

    • NAID

      120005986898

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Occupation time theorems for a class of one-Dimensional diffusion processes.2005

    • Author(s)
      Kasahara, Y, Watanabe, S.
    • Journal Title

      Periodica Math.Hungarica (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On a generalized arc-sine law for one-dimensional diffusion processes2005

    • Author(s)
      Y.Kasahara, Y.Yano
    • Journal Title

      Osaka J.Math. 42(印刷中)

    • NAID

      120005986898

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Occupation time theorems for a class of one-dimensional diffusion processes2005

    • Author(s)
      Y.Kasahara, S.Watanabe
    • Journal Title

      Periodica Math.Hungarica (to appear9

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Generalized t-transformations of probability measures and deformed convolutions2004

    • Author(s)
      A.Krystek, H.Yoshida
    • Journal Title

      Prob.Math.Stat. 24

      Pages: 97-119

    • Related Report
      2004 Annual Research Report
  • [Journal Article] The weight function on non-crossing partitions for the Δ-convolution2003

    • Author(s)
      Yoshida, H
    • Journal Title

      Math.Z. 245

      Pages: 105-121

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The spectrum radii of free convex sums of projections2003

    • Author(s)
      Hori, R, Yoshida, H
    • Journal Title

      Nat.Sci.Rep.Ocha.Univ. 54

      Pages: 1-9

    • NAID

      110006559613

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The weight function on non-crossing partitions for the Δ-convolution.2003

    • Author(s)
      Yoshida, H.
    • Journal Title

      Math.Z. 245

      Pages: 105-121

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The spectrum radii of free convex sums of projections.2003

    • Author(s)
      Hori, R, Yoshida H.
    • Journal Title

      Nat.Sci.Rep.Ocha.Univ. 54

      Pages: 1-9

    • NAID

      110006559613

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Remarks on Tauberian theorem of exponential type and Fenchel-Legendre transform2002

    • Author(s)
      Kasahara, Y, Kosugi, N
    • Journal Title

      Osaka J.Math 39

      Pages: 613-619

    • NAID

      120005987024

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Remarks on Tauberian theorem of exponential type and Fenchel-Legendre tranform.2002

    • Author(s)
      Kasahara, Y, Kosugi, N.
    • Journal Title

      Osaka J.Math. 39

      Pages: 613-619

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A remark on the covariance matrix of fractional Brownian motion2001

    • Author(s)
      Kasahara, Y, Kono, N
    • Journal Title

      Nat.Sci.Rep.Ocha.Univ. 52

      Pages: 13-19

    • NAID

      110006559581

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A remark on the covariance matrix of fractional Brownian motion.2001

    • Author(s)
      Kasahara, Y, Kono, N.
    • Journal Title

      Nat.Sci.Rep.Ocha.Univ. 52

      Pages: 13-19

    • NAID

      110006559581

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Generalized q-deformed Gaussian random variables

    • Author(s)
      M.Bozejko, H.Yoshida
    • Journal Title

      Banach Center.Publ. (to appear)

    • Related Report
      2004 Annual Research Report
  • [Publications] Kasahara, Yuji, Yano Yuko: "On a generalized arc-sine law for one-dimensional diffusion processes"Osaka J.Math.. (To appear). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] Yoshida, Hiroaki: "The weight function on non-crossing partitions for the Δ-convolution"Math.Z.. 245. 105-121 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Hori, Reiko, Yoshida, Hiroaki: "The spectrum radii of free convex sums of projections"Nat.Sci.Rep.Ocha.Univ.. 54. 1-9 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Krystek, Anna, Yoshida, Hiroaki: "The combinatorics of the r-free convolution"Inf.Dim.Analy.Quant.Probab.Rel.Topics. 6. 619-627 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Y.Kasahara, N.Kosugi: "Remarks on Tauberian theorem of exponential type and Fenchel-Legendre transform"Osaka J. Math.. 39. 613-619 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] H.Yoshida: "The weight function on non-crosing partitions for the Δ-convolution"Mathematische Zeitschrift. (印刷中).

    • Related Report
      2002 Annual Research Report
  • [Publications] Y.Kasahara, N.Kosugi: "Remarks on Tauberian Theorem of exponential type and Fenchel-Legendre transform"Osaka J. Math.. (印刷中).

    • Related Report
      2001 Annual Research Report
  • [Publications] Y.Kasahara 他: "A remark on the covariance matrix of fractional Brownian mation"Rep. Nat. Sci. Ocha. Univ.. 52. 13-19 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Y.kaahara, N.Kosugi: "Large deviation around the origin for sums of nonnegative i. i. d. random variables"Rep. Nat. Sci. Ocha. Univ.. 51. 27-31 (2000)

    • Related Report
      2001 Annual Research Report
  • [Publications] N.Saitoh, H.Yoshida: "The infinite divisibility and orthogonal polynomials with a constant recursion formula in free probability theory"Probab. Math. Statist. 21. 159-170 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] N.Saitoh, H.Yoshida: "q-deformed Poisson random variables on q-Fock space"J. Math. Phys.. 41. 5767-5772 (2000)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi