• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of critical phenomena by lace expansion and renormalization group

Research Project

Project/Area Number 13640112
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionNagoya University

Principal Investigator

HARA Takashi  Nagoya University, Graduate School of Mathematics, Associate Professor, 大学院・多元数理科学研究科, 助教授 (20228620)

Co-Investigator(Kenkyū-buntansha) SHIGA Tokuzo  Tokyo Institute of Technology, Graduate School of Science and Engineering, Professor, 大学院・理工学研究科, 教授 (60025418)
HATTORI Tetsuya  Nagoya University, Graduate School of Mathematics, Associate Professor, 大学院・多元数理科学研究科, 助教授 (10180902)
渡辺 浩  日本医科大学, 医学部, 助教授 (70210987)
Project Period (FY) 2001 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥3,300,000 (Direct Cost: ¥3,300,000)
Fiscal Year 2003: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2002: ¥1,200,000 (Direct Cost: ¥1,200,000)
Fiscal Year 2001: ¥1,100,000 (Direct Cost: ¥1,100,000)
Keywordspercolation / self-avoiding walk / critical phenomena / renormalization group / Ising model / hierarchical model / two-point function / critical dimension / ランダムクラスターモデル / 臨界点 / 特性関数
Research Abstract

We have studied critical phenomena of stochastic geometric models (self-avoiding walk, percolation, lattice animals... ) in a mathematically rigorous manner, using renormalization group and lace expansion techniques. Our main results are as follows.
1.Rigorous renormalization group analysis of hierarchical spin models. We have rigorously performed the renormalization group transformation for the hierarchical Ising model in four dimensions, and proved that its continuume limit it gaussian (i.e. "trivial"). Also we found a partial differential equation which is equivalent to the renormalization group transformation.
2.Rigorous asymptotic estimates of the critical two-point functions for self-avoiding walk, percolation and lattice animals. We have shown that their asymptotic behavior is the same as that of the simple random walk, as long as the system dimension is sufficiently large.
3.We have performed a renormalization group analysis of hierarchical weakly self-repelling walks in four dimensions. Our result proves the existence of the so called "logarithmic corrections" for the susceptibility.
4.We are currently analyzing critical behavior of a kind of random cluster model, which interpolates percolation and lattice animals. Our goal is to determine its critical dimension.

Report

(4 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • 2001 Annual Research Report
  • Research Products

    (17 results)

All Other

All Publications (17 results)

  • [Publications] Takashi Hara, Tetsuya Hattori, Hiroshi Watanabe: "Thrviality of hierarchical Ising model in four dimensions"Commun.Math.Phys.. 220. 13-40 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Takashi Hara, Remco van der Hofstad, Gordon Slade: "Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models"Ann.Prob.. 31. 349-408 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] M.Cranston, T.Mountford, T.Shiga: "Lyapunov Exponents for the Parabolic Anderson Model"Acta Mathematica Universitatis Comenianae. 71. 161-186 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] F.Comets, T.Shiga, N.Yoshida: "Directed Polymers in Random Environment Path Localization and Strong Disorder"Bernoulli. 9. 1-19 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] B.Hambly, K.Hattori, T.Hattori: "Self-repelling walk on the Sierpinski Gasket"Prob.Theory Rel.Fields.. 124. 1-25 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Hattori, T.Tsuda: "Renormalization group analysis of the self-avoiding paths on the d-dimensional Sierpinski Gasket"J.Statist.Phys.. 109. 39-66 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Takashi Hara, Tetsuya Hattori, Hiroshi Watanabe: "Triviality of hierarchical Ising model in four dimensions."Commun.Math.Phys.. 220. 13-40 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Takashi Hara, Remco van der Hofstad, Gordon Slade: "Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models."Ann.Prob.. 31. 349-408 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] M.Cranston, T.Mountford, T.Shiga: "Lyapunov Exponents for the Parabolic Anderson Model."Acta Mathematica Universitatis Comenianae. 71. 161-186 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] F.Comets, T.Shiga, N.Yoshida: "Directed Polymers in Random Environment : Path Localization and Strong Disorder."Bernoulli. 9. 1-19 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] B.Hambly, K.Hattori, T.Hattori: "Self-repelling walk on the Sierpinski Gasket"Prob. Theory Rel. Fields.. 124. 1-25 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Hattori, T.Tsuda: "Renormalization group analysis of the self-avoiding paths on the d-dimensional Sierpinski Gasket."J.Statist.Phys.. 109. 39-66 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Takashi Hara, Remco van der Hofstad, Gordon Slade: "Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models"Ann.Prob.. 31. 349-408 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 原 隆: "確率論的統計力学モデルの臨界現象とlace expansion"物性研究. (発表予定). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] Z.Li, T.Shiga, M.Tomisak: "A Conditional Limit Theorem for Generalized Diffusion Processes"J.Math. Kyoto Univ.. 43(発表予定). (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] M.Cranston, T.Mountford, T.Shiga: "Lyapunov Exponents for the Parabolic Anderson Model with Levy Noise"Prob.Theory Rel.Fields. (発表予定). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] Takashi Hara, Tetsuya Hattori, Hiroshi Watanabe: "Triviality of hierarchical Ising model in four dimensions"Commun. Math. Phys.. 220. 13-40 (2001)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi