• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research of Matrix Inequalities and Norm Inequalities on Matrices Algebra

Research Project

Project/Area Number 13640146
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionHOKKAIDO UNIVERSITY OF EDUCATION

Principal Investigator

OKUBO Kazuyoshi  Hokkaido Univ. of Education, 教育学部・札幌校, 教授 (80113661)

Co-Investigator(Kenkyū-buntansha) HASEGAWA Izumi  Hokkaido Univ. of Education, 教育学部・旭川校, 教授 (50002473)
OSADA Masayuki  Hokkaido Univ. of Education, 教育学部・札幌校, 教授 (10107229)
SAKURADA Kuninori  Hokkaido Univ. of Education, 教育学部・札幌校, 教授 (30002463)
KOMURO Naoto  Hokkaido Univ. of Education, 教育学部・旭川校, 助教授 (30195862)
Project Period (FY) 2001 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥3,400,000 (Direct Cost: ¥3,400,000)
Fiscal Year 2002: ¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 2001: ¥1,700,000 (Direct Cost: ¥1,700,000)
KeywordsAluthge transformation / λ- Aluthge transformation / Numerical range / C-numerical range / q-numerical range / Numerical radius / Operator radius / Weakly unitarily invariant norm / Absolute norm / Spectrum / Aluthge transform / Rank reducing / Approximant
Research Abstract

Let T ∈ B(H) and T = UP be a polar decomposition of T. For 0 < λ < 1, we define the λ-Aluthge transformation of T by P^λUP^<1-λ>. In particular, for λ = 1/2, T^^~ := P^<1/2>U P^<1/2> is called the Aluthge transformation of T (See [A]). The numerical range W(T) of T is defined by W(T) := {<x, Tx> | ||x|| = 1}. Recently, Yamazaki and Wu showed that W(T^^~) ⊂ W(T), then w(T^^~) 【less than or equal】 w(T) for the numerical radius w(・). In this research we extended these results. We give the following results as the parts of our works.
(i) On the generalized numerical range
Let T, C be n × n complex matrices. The C-numerical range of T is defined by W_C(T) := {tr(CU^*AU) | U; unitary}.
If C is a Hermitian matrix or a rank one matrix, then the following inclusion relation holds:
W_C(f(T^^~)) ⊂ W_C(f(T))
for f(z) is a complex polynomial.
(ii) The inequality on semi-norms.
Let A ∈ B(Η), and |||・||| be a semi-norm on B(Η). If |||・||| satisfy ∃γ, |||X||| 【less than or equal】 γ ||X|| (X ∈ B(H)), |||S^*XS||| 【less than or equal】 ||S||^2・|||X||| (X, S ∈ B(Η)). Then for 0 【less than or equal】 λ 【less than or equal】 1, |||f(A_λ)||| 【less than or equal】 max {|||f(A)|||, |||U^* ・f(A) ・ U + f(0)(I-U^*U)|||} for any polynomial f. From this fact, we can prove that for the operator radii w_ρ(・) (ρ > 0), 0 【less than or equal】 λ 【less than or equal】 1, and polynomial f, we have w_ρ(f(A_λ)) 【less than or equal】 w_ρ(f(A)).

Report

(3 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • Research Products

    (35 results)

All Other

All Publications (35 results)

  • [Publications] 大久保 和義(共著C.R.Johnson): "Uniqueness of matrix square roots under a numerical range condition"Linear Algebra and its Applications. 341. 194-199 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 長谷川 和泉(共著V.Sorin Sabau): "Some remarks on Randers spaces of constant flag curvature"Proceeding of the 37th Symposium on Finsler Geometry. 22-25 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 小室直人: "The set of uper bounds in ordered linear spaces, Proceedings of the International"Proceedings of the Interantional Conference on Nonlinear Analysis and Convex Analysis. (To appear). (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 大久保 和義(共著H.Woerdeman): "Rank reducing matrix norms"Linear and Multilinear Algebra. (To appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 大久保 和義: "On weakly unitarily invarimat norm and the Aluthge transformation"Linear Algebra and its Applications. (To appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 大久保 和義(共著 伊藤, 中里, 山崎): "On generalized numerimcal range of the Aluthge transformation"Linear Algebra and its Applications. (To appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] N. Komuro: "Properties on the set of upper bounds in partially ordered linear space"Journal of Hokkaido university of Education. 51. 15-20 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] C. R. Johnson, K. Okubo, R. Reams: "Uniqueness of matrix square roots and applications"Linear Algebra and its Applications. 323. 51-60 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K. Okubo, I. Spitkovsky: "On the characterization of 2 x 2 p-contraction matrices"Linear Algebra and its Applications. 325. 177-189 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] I. Hasegawa, K. Yamauchi: "Infinitesimal projective transformations on tangent bundle with the horizontal lift connection"Journal of Hokkaido University of Education. 52. 1-6 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] N. Komuro: "PropertieGeneralized supremum in sequence spaces with order"Journal of Hokkaido University of Education. 52. 17-24 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] C. R. Johnson, K. Okubo: "Uniqueness of matrix square roots under a numerical range condition"Linear Algebra and its Applications. 341. 194-199 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] I. Hasegawa, V. Sorin Sabau, H. Shimada: "Some remarks on Randers spaces of constant flag curvature"Proceeding of the 37th Symposium on Finsler Geometry. 22-25 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] I. Hasegawa, K. Yamauchi: "Infinitesimal conformal transformations on tangent bundles with the lift metric I+II"Scientiae Mathematicae Japonicae. 57-1. 129-137 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] I. Hasegawa, K. Yamauchi: "Infinitesimal holomorphically projective transformations on the tangent bundles with the complete lift connection and the adapted almost complex structure"Journal of Hokkaido University of Education. 53. 1-8 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] N. Komuro: "The set of upper bounds in ordered linear spaces"Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis. (To appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K. Okubo, H. Woerdeman: "Rank reducing matrix norm"Linear and Multiliner Algebra. (To appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] I. Hasegawa, V. Sorin Sabau, H. Shimada: "Randers spaces of constant flag curvature induced by almost contact metric structures"Hokkaido Mathematical Journal. (To appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] M. Ito, H. Nakazato, K. Okubo, T. Yamazaki: "On generalized numerimcal range of the Aluthge transformation"Linear Algebra and its Applications. (To appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K. Okubo: "Weakly unitarily invariant norm and the Aluthge transformation"Linear Algebra and its Applications. (To appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 大久保 和義(共著C.R.Johnson): "Uniqueness of matrix square roots under a numerical range condition"Linear Algebra and its Applications. 341. 194-199 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 長谷川 和泉(共著V.Sorin, Sabau): "Some remarks on Randers spaces of constant flag curvature"Proceeding of the 37th Symposium on Finsler Geometry. 22-25 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 長谷川和泉(共著 山内一也): "Infinitesimal conformal transformations on tangent bundles with the lift metric I+II"Scintiae Mathematicae Japonicae. 57-1. 129-137 (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] 小室 直人: "The set of upper bounds in ordered linear spaces, Proceedings of the International"Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis. (To appear). (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] 大久保 和義(共著H.Woerdeman): "Rank reducing matrix norms"Linear and Multilinear Algebra. (To appear).

    • Related Report
      2002 Annual Research Report
  • [Publications] 大久保 和義: "On weakly unitarily invarimat norm and the Aluthge transformation"Linear Algebra and its Applications. (To appear).

    • Related Report
      2002 Annual Research Report
  • [Publications] 長谷川和泉(共著V.Sorin Sabau): "Randers spaces of constant flag curvature induced by almost contact metric structures"Hokkaido Mathematical Journal. (To appear). (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] 大久保 和義(共著 伊藤, 中里, 山崎): "On generalized numerimcal range of the Aluthge transformation"Linear Algebra and its Applications. (To appear).

    • Related Report
      2002 Annual Research Report
  • [Publications] 大久保和義 (共著C.R.Johnson etc): "Uniqueness of Matrix square roots and ApplicationT"Linear Algebra and its Application. 323. 51-60 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 大久保和義 (共著I.Spitkovsky): "On the characterization of 2×2 p-contraction matrices"Linear Algebra and its Applications. 325. 177-189 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 大久保和義 (共著C.R.Johnson): "Uniquness of matrix square roots under the some numerical range condition"Linear Algebra and its Applications. 341. 194-199 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] 大久保和義 (共著H.Woerdeman): "Rank reducing matrix norm"Linear abd Multiliner Algebra. 2002.

    • Related Report
      2001 Annual Research Report
  • [Publications] 長谷川和泉 (共著 山内一也): "Infinitesimal projective transformations on the tangent bunbles with the Horizontal lift connection"Journal of Hokkaido University of Education. 52. 1-6 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 小室直人: "Properties of the set of upper bonds in partially ordered linear space"Journal of Hokkaido University of Education. 51. 15-20 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 小室直人: "PropertieGeneralized supremum in sequence spaces with order"Journal of Hokkaido University of Education. 52. 17-24 (2001)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi