• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

ALGEBRAIC ANALYTICAL STUDY OF SHEAVES AND INFINITE ORDRE DIFFERENTIAL EQUATIONS

Research Project

Project/Area Number 13640154
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionCHIBA UNIVERSITY

Principal Investigator

ISHIMURA Ryuichi  Chiba Univ., FACULTY OF SClENCES, PROFESSOR, 理学部, 教授 (10127970)

Co-Investigator(Kenkyū-buntansha) AOKI Takashi  KINKI UNIVERSITY, FAC. SCI. TECH., PROFESSOR, 理工学部, 教授 (80159285)
OKADA Yasunori  Chiba Univ., FACULTY OF SClENCES, ADJOINT PROFESSOR, 理学部, 助教授 (60224028)
HINO Yoshiyuki  Chiba Univ., FACULTY OF SClENCES, PROFESSOR, 理学部, 教授 (70004405)
TOSE Nobuyuki  KEIO UNIVERSITY, FAC. ECON., PROFESSOR, 経済学部, 教授 (00183492)
TAJIMA Shinichi  NIIGATA UNIVERSITY, FAC. TECH., PROFESSOR, 工学部, 教授 (70155076)
Project Period (FY) 2001 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥3,800,000 (Direct Cost: ¥3,800,000)
Fiscal Year 2002: ¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 2001: ¥2,100,000 (Direct Cost: ¥2,100,000)
KeywordsAlgebraic analysis / pseudo-differential equations / infinite ordre differential equations / partial differential equations / Microlocal study of sheaves / differential-difference equations / convolution equations / Cauchy problem
Research Abstract

The aims of this research were as follows :
[1] To generalize the theorem for Cauchy problem of micro-differential equations in the complex domain, obtained by the head investigator, to the sistem of pseudo-differential equations.
[2] To characterize the automorphism of the sheaf of holomorphic functions by the infinite ordre differential operators, without assuming the continuity.
[3] To generalize the results concerning the existence and the analytic continuation for the single convolution equation in the complex domain to the system.
At first, by using the cohomological method, we have defined a natural class of non-local pseudo-differential operators containing any linear differential-difference operators. And furthermore, we gave the composition of two such operators and also the operation to holomorphic functions. We proved the one to one correspondance between the operators and their symbols and finally, defining the characteristic set for the non-local pseudo-differential operator, we proved the invertibility theorem for the non-local pseudo-differential operator.

Report

(3 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • Research Products

    (22 results)

All Other

All Publications (22 results)

  • [Publications] R.ISHIMURA: "Non-local pseudo-differential operators"Journal de Mathematiques pures et appliquees. 81. 1241-1276 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] O.LIESS, Y.OKADA, N.TOSE: "Hartogs phenomena for maicrofunctions with holomorphic parameters"Publications RIMS, Kyoto University. 37(2). 221-238 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] O.LIESS, Y.OKADA, N.TOSE: "Second hyperfunctions, regular sequences and Fourier inverse transforms"Bulletin de la Societe Royale des Sciences de Liege. 70(4,5,6). 307-343 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Y.HINO, S.MURAKAMI, T.NAITO, V.M.NGUYEN: "A variation-of-constants formula for abstract functional differential equations in the phase space"Journal of Differential Equations. 179. 336-355 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] T.AOKI, T.KAWAI, T.KOIKE, Y.TAKEI: "On the exact WKB analysis of operators admitting infinitely many phases"Advances in Mathematics. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S.TAJIMA: "Exponential polyhomials and the Fourier-Borel transforms of algebraic local cohomology classes"Microlocal Analysis and Complex Fourier Analysis, World Scientific. 284-296 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] ISHIMURA R.: "Non-local pseudo-differential operators"Journal de Mathematiques Pures et Appliquees. 81. 1241-1276 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] LIESSE O., OKADA Y, and TOSE N.: "Hartogs' phenomena for microfunctions with holomorphic parameters"Publications RIMS Kyoto University. 37(2). 221-238 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] LIESSE O., OKADA Y. and TOSE N.: "Second Hyperfunctions, Regular Sequences and Fourier Inverse Transforms"Bulletin de la Societe Royale de Liege. 70 (4-5-6). 307-343 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] HINO Y., MURAKAMI S., NAITO T. and NGUYEN V.M.,: "A variation-of-constants formula for abstract functional differential equations in the phase space"Journal of Differential Equations. 179. 336-355 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] AOKI T., KAWAI T., KOIKE T. and TAKEI Y.: "On the exact WKB analysis of operators admitting infinitely many phases"Advances in Mathematics. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] TAJIMA S.: "Exponential polynomials and the Fourier-Borel transforms of algebraic local cohomology classes"Microlocal Analysis and Complex Fourier Transforms, World Scientific. 284-296 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] R.ISHIMURA: "Non-local pseudo-differential operators"Journal de Mathematiques pures et appliquees. 81. 1241-1276 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Y.HINO, S.MURAKAMI, T.NAITO, V.M.NGUYEN: "A variation-of-constants formula for abstract functional differential equations in the phase space"Journal of Differential Equations. 179. 336-355 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Y.HINO, S.MURAKAMI, V.M.NGUYEN: "Decomposition of variation of constants formula for abstract functional differential equations"Functialaj Ekvacioj. 45. 341-372 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.AOKI, T.KAWAI, T.KOIKE, Y.TAKEI: "On the exact WKB analysis of operators admitting infinitely many phases"Advances in Mathematics. (to appear).

    • Related Report
      2002 Annual Research Report
  • [Publications] S.TAJIMA: "Exponential polynomials and the Fourier-Borel transforms of algebraic local cohomology classes"Microlocal Analysis and Complex Fourier Analysis, World Scientific. 284-296 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] O. Liess, Y. Okada, N. Tose: "Hartogs phenomena for microfunctions with holomorphic parameters"Publications RiMS, Kyoto University. 37(2). 221-238 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Y. Hino, S. Murakami: "Quasi-processes and stabilities in functional differential equations"Nonlinear Analysis. 47. 4025-4036 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Y. Hino, S. Murakami, T. Naito, Nguyen Van Minh: "A variation of constants formula a for abstract functional differential equations in the phasespace"Journal of Differential Equations. 179. 336-355 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] Y. Hino, T. Naito, N. V. Minh, J. S. Shin: "Almost periodic sdutions of differential equations in Banach spaces"Taylor and Francis. (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] Y. Hino, S. Murakami: "Limiting equations and some stability properties for asymptotically almost periodic functional equations with infinitedelay"Tohoku Mathematical Journal. (to appear).

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi