• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Asymptotics of heat kernels and principal eigenvalue problems for Laplacians

Research Project

Project/Area Number 13640165
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKansai University (2002)
Nagoya University (2001)

Principal Investigator

ICHIHARA Kanji  Kansai University, Faculty of Engineering, Professor, 工学部, 教授 (00112293)

Co-Investigator(Kenkyū-buntansha) HATTORI Tetsuya  Nagoya University, Graduate School of Mathematics, Associate Professor (H13), 大学院・多元数理科学研究科, 助教授 (10180902)
OSADA Hirofumi  Nagoya University, Graduate School of Mathematics, Professor, 大学院・多元数理科学研究科, 教授 (20177207)
FUKUSHIMA Masatoshi  Kansai University, Faculty of Engineering, Professor, 工学部, 教授 (90015503)
MIYAKE Masatake  Nagoya University, Graduate School of Mathematics, Professor (H13), 大学院・多元数理科学研究科, 教授 (70019496)
CHIYONOBU Taizo  Kwansei Gakuin University, School of Science, Associate Professor, 理工学部, 助教授 (50197638)
Project Period (FY) 2001 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥3,100,000 (Direct Cost: ¥3,100,000)
Fiscal Year 2002: ¥1,300,000 (Direct Cost: ¥1,300,000)
Fiscal Year 2001: ¥1,800,000 (Direct Cost: ¥1,800,000)
Keywordsheat kernel / Markov process / large deviation / spectrum / principal eigenfunction / hyperbolic space / tree / Brownian motion / ディリクレ形式 / マルコフ連鎖 / 固定端過程 / 調和変換 / 主固有値 / 被覆空間 / 離散群 / 対称空間
Research Abstract

The main purpose in this research project is a systematic investigation of the Donsker-Varadhan type large deviation for a class of reversible Markov processes whose transition probability densities generally decay exponentially in time. However the Markov processes in this class possesses a strong transience property. Therefore it can not be anymore expected to prove the usual large deviation results for the processes. Here we are concerned with the large deviation of the occupation time distribution for the pinned motions of the processes. Such type of large deviations are relevant to the asymptotics of the kernel functions of the associated Schrodinger operators. The essential ingredients in our research are the lower bound of the L^2-spectrum associated with the Markov process and the corresponding generalized positive eigenfunction. Making use of a kind of harmonic transform of the Markov process based on the above eigenfunction, a rate function suitable to the present case is introduced. We have established large deviation principles and related limit theorems for the following processes:
(1) Reversible, periodic Markov chains with discrete time parameter in the multidimensional square lattices,
(2) Reversible, periodic Markov chains with continuous time parameter in the multidimensional square lattices,
(3) Brownian motions in hyperbolic spaces.
(4) Radial random walks in homogeneous trees.

Report

(3 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • Research Products

    (19 results)

All Other

All Publications (19 results)

  • [Publications] 市原完治: "Long Time Asymptotic Properties of Heat Kernels on Negatively Curved Riemannian Manifolds"Infinite Dimensional Analysis, Quantum Probability and Related Topics. 4. 377-400 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 市原完治: "Large deviation for pinned covering diffusion"Bull.Sci.math.. 125. 529-551 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 市原完治: "Birth and death processes in randomly fluctuating environments"Nagoya Math.J.. 166. 93-115 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 福島正俊: "On Sobolev and capacitary inequalities for contractive Besov spaces over d-sets"Potential Analysis. 18. 59-77 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 長田博文: "Harnack inequalities for exotic Brownian motions"Kyushu J.Math.. 56. 363-380 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 三宅正武: "Cauchy-Kowalevski's Theorem"Preprint Series in Mathematical Sciences, School of Informatics and Science and Graduate School of Human Informatics, Nagoya University. 2001-6. 1-14 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K. Ichihara: "Long time asymptotic properties of heat kernels on negatively curved Riemannian manifolds"Infinite Dimension Analysis, Quantum Probability and Related Topics. 4. 377-400 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K. Ichihara: "Large deviation for pinned covering diffusion"Bull. Sci. math.. 125. 529-551 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] K. Ichihara: "Birth and death processes in randomly fluctuating environments"Nagoya Math. J.. 166. 93-115 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] M. Fukushima: "On Sobolev and capacitary inequalities for contractive Besov spaces over d-sets"Potential Analysis. 18. 59-77 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] H. Osada: "Harnack inequalities for exotic Brownian motions"Kyushu J. Math.. 56. 363-380 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] M. Miyake: "Cauchy-Kowalevski's Theorem"Preprint Series in Mathematical Sciences, School of Informatics and Sciences and Graduate School of Human Informatics, Nagoya University. 2001-6. 1-14 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 市原完治: "Birth and death processes in randomly fluctuating environments"Nagoya Math. J.. 166. 93-115 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 福島正俊: "On Sobolev and capacitary inequalities for contractive Besov spaces over d-sets"Potential Analysis. 18. 59-77 (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] 長田博文: "Harnack inequalities for exotic Brownian motions"Kyushu J. Math.. 56. 363-380 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 市原完治: "Long time asymptoeic properties of heat kernels on negatively curved Riemannian manifolds"Infinite Dimensional Aralysis, Quantum Probability and Related Topics. Vol.4 No.3. 377-400 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 市原完治: "Large deviation for pinned covering diffusion"Bulletin des Sciences Mathematiques. Vol.125 No.6-7. 529-551 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 市原完治: "Birth and death processes in randomly fluctuating environments"Nagoya Mathematical Journal. (発表予定). (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] 長田博文: "A family of diffusion processes on Sierpinski carpets"Probability Theory and Related Fields. Vol.119. 275-310 (2001)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi