• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Continuation and uniqueness for solutions of partial differential equations

Research Project

Project/Area Number 13640166
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionNagoya University

Principal Investigator

SUZUKI Noriaki  Nagoya University, Graduate School of Mathematics, Associate Professor, 大学院・多元数理科学研究科, 助教授 (50154563)

Co-Investigator(Kenkyū-buntansha) ISHIGE Kazuhiro  Nagoya University, Graduate School of Mathematics, Associate Professor, 大学院・多元数理科学研究科, 助教授 (90272020)
MIYAKE Masatake  Nagoya University, Graduate School of Mathematics, Professor, 大学院・多元数理科学研究科, 教授 (70019496)
Project Period (FY) 2001 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥1,900,000 (Direct Cost: ¥1,900,000)
Fiscal Year 2002: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2001: ¥1,000,000 (Direct Cost: ¥1,000,000)
Keywordsharmonic function / heat equation / Dirichlet problem / mean value theorem / heat ball
Research Abstract

We study the continuation and uniqueness for solutions of partial differential equations, by using potential theory. We have the following results.
1. In 2001, we showed a characterization of heat balls by mean value property for temperatures in Proc.Amer.Math.Soc. Then a generalization of it was obtained and published in Suriken Kokyuroku. Based on these results, we start to study the existence of mean value density for temperatures. In particular, a relation with the Dirichlet regularity and the existence of a bounded density or a density with positive infimum are discussed. The development of them is our new object of study.
2. We discueesd an extension of harmonic function on a domain. In the 2 dimensional case our problem is completely solved, but in higher dimensional case there are some problems.
3. We study a polynomial solution of the Dirichlet problem on a domain for the heat equation. In case that a domain is determined by a polynomial with degree less than 3, we obtain a necessary and sufficient condition under which the above problem is solvable. This result is publised in Bull.Aichi Inst.Tech. In case the degree is more than 4 we find that this problem is closely related with an assertion concerning to the zero points of Hermite polynomials.
4. In the connection of uniqueness of a solution of α parabolic operators on a half space, we study the Huygens property and the duality of parabolic Bergman spaces. Our spaces contain the usual harmonic and heat Bergman spaces.

Report

(3 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • Research Products

    (14 results)

All Other

All Publications (14 results)

  • [Publications] N.Suzuki: "A characterization of heat balls by a mean value property for temperatures"Proc. Amer. Math. Soc.,. 129. 2709-2713 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] G.Nakamura: "Polynomial solutions to foundary-value problems of the heat equation"Bull. Aichi. Inst. Tech. 37. 33-38 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] N.Suzuki: "Mean value property for temperatures on an annulus"数理解析研究所講究録. 1293. 168-174 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 鈴木紀明: "数学基礎・複素関数"培風館. 197 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] N.Suzuki: "A characterization of heat balls by a mean value property for temperatures"Proc.Amer.Math.Soc.. 129. 2709-2713 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] G.Nakamura: "Polynomial solutions to boundary-value problems of the heat equation"Bull.Aichi.Inst.Tech.. 37. 33-38 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] N.Suzuki: "Mean value property for temperatures on an annlus domain"Suriken-Kokyuroku. 1293. 168-174 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] N.Suzuki: "Complex function Theory"Baihukan. 197 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Noriaki Suzuki: "A characterization of heat balls by a mean value property for temperatures"Proc. Amer. Math. Soc.. 129. 2709-2713 (2001)

    • Related Report
      2002 Annual Research Report
  • [Publications] Gou Nakamura: "Polynomial solutions to boundary-value problems of the heat equation"Bull. Aichi Inst. Tech.. 37. 33-38 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Noriaki Suzuki: "Mean value property for temperatures on an annlus domain"数理解析研究所講究録. 1293. 168-174 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 鈴木紀明: "数学基礎・複素関数"培風館. 197 (2001)

    • Related Report
      2002 Annual Research Report
  • [Publications] Noriaki Suzuki: "A characterization of heat balls by a mean value property for temperatures"Proc. Amer. Math. Soc.. 129. 2709-2713 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 鈴木紀明: "数学基礎・複素関数"培風館. 197 (2001)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi