• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Asymptotic behavior of solutions of a certain quasi non-linear operator and its application to geometric function theory

Research Project

Project/Area Number 13640169
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionOsaka University

Principal Investigator

TAKEGOSHI Kensho  Osaka University Graduate School of Science, Assistant Professor, 大学院・理学研究科, 助教授 (20188171)

Co-Investigator(Kenkyū-buntansha) KOISO Norihito  Osaka University Graduate School of Science, Professor, 大学院・理学研究科, 教授 (70116028)
MABUCHI Toshiki  Osaka University Graduate School of Science, Professor, 大学院・理学研究科, 教授 (80116102)
NAMBA Makoto  Osaka University Graduate School of Science, Professor, 大学院・理学研究科, 教授 (60004462)
SUGIMOTO Mitsuru  Graduate School of Science, Assistant Professor, 大学院・理学研究科, 助教授 (60196756)
ENOKI Ichiro  Graduate School of Science, Assistant Professor, 大学院・理学研究科, 助教授 (20146806)
Project Period (FY) 2001 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥4,000,000 (Direct Cost: ¥4,000,000)
Fiscal Year 2002: ¥1,500,000 (Direct Cost: ¥1,500,000)
Fiscal Year 2001: ¥2,500,000 (Direct Cost: ¥2,500,000)
KeywordsParabolicity of manifold / Harmonic map / The scaler curvature equation / Subharmonic functions / 劣調和函数 / 非線形シュレジンガー方程式 / 平均曲率作用素 / 漸近的な最大値原理 / チーガーの定数 / 超曲面の極小性
Research Abstract

The purpose of this project is to study asymptotic behaviour of (sub-) solutions of a certain quasi non-linear operator P on a complete Riemannian manifold (M, g). Here P is either the Laplacian or the mean curvature operator which is the most interesting case. Several topics related to maximum principle for solutions of that operator have been studied. We could show the generalized maximum principle for such an operator P without any Ricci curvature condition of (M, g). Our method depends only on some volume growth condition of that manifold. From the principle we can induce several interesting results related to (1) uniqueness of solutions of the scaler curvature equation, (2) Liouville type theorem for harmonic maps, (3) isometric property of conformal transformations preserving scaler curvature and (4) value distribution of minimal immersions of complete manifolds, which contain almost all known results up to now in Riemannian geometry. Furthermore we studied a growth property of L^p-integrals of subharmonic functions on geodesic spheres on (M, g), and obtained an optimal growth estimate of those integrals. This result is also related to the maximum principle on complete manifolds. From this estimate we can yield a very simple and function theoretic proof for (M, g) to be parabolic, and get several results related to the problem (1)〜(4).

Report

(3 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • Research Products

    (17 results)

All Other

All Publications (17 results)

  • [Publications] Takegoshi, K.: "Strongly p-subharmonic functions and volume growth property of complete Riemannian manifolds"Osaka J Math.. 38. 839-850 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Mabuchi, T.: "Heat kernel estimates and the Green functions on multiplier Hermitian manifolds"Tohoku Math. J.. 54. 261-277 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Mabuchi, T: "A theorem of Calabi-Matsusima's type"Osaka J Math.. 39. 49-57 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Koiso, N.: "Convergence towards an elastica in a Riemannian manifold"Osaka J Math.. 37. 467-487 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Kensho Takegoshi: "Torsion freeness theorems for higher direct images of canonical sheaves by a certain convex Keahler morphism"Osaka J. Math.. 36. 17-26 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Kensho Takegoshi: "Strongly p-subharmonic functions and volume growth property of complete Riemannian manifolds"Osaka J. Math.. 38. 839-850 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Toshiki Mabuchi: "Heat kernel estimates and the Green functions multipler Hermitian manifolds"Tohoku Math. J.. 54. 261-277 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Toshiki Mabuchi: "A theorem of calabi-Matsusima's type"Osaka. J. Math.. 39. 49-57 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Norihito Koiso: "Convergence towards an elastica in a Riemannian manifold"Osaka J. Math.. 37. 467-487 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Takegoshi, K.: "A note on divergence of LP-integrals of sub-harmonic functions and its applications"Proceedings of the AMS. (掲載決定). (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] Mabuchi, T.: "Heat leernel estimates and the Green functions on multiplier Harmitian manifolds"Tohoku Math. J. 54. 261-277 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Mabuchi, T.: "A theorem of Calabi-Matsusima's type"Osaka J. Math. 39. 49-57 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Koiso, N.: "Convergence towards an elastica in a Riemannian manifold"Osaka J. Math. 37. 467-487 (2000)

    • Related Report
      2002 Annual Research Report
  • [Publications] Takegoshi, K: "Strongly p-subharmonic functions and volume growth property of complete riemannian maurtolds"Osaka Journal of Mathematics. 38・4. 839-850 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Mabuchi, T: "Vector field energies and critical metrics on kahler manifolds"Nagoya Mathematical Journal. 162. 41-63 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Mabuchi, T: "A theorem of Calabi-Matsushima's type"Osaka Journal of Mathematics. 39. 1-9 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] Sugimoto, M: "A weak extension theorem for in homogeneous differential equations"Forum Math. 13. 323-334 (2001)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi