• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Microlocal filtering with multiwavelet frames

Research Project

Project/Area Number 13640171
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionOsaka Kyoiku University

Principal Investigator

ASHINO Ryuichi  Faculty of Education, Associate Professor, 教育学部, 助教授 (80249490)

Co-Investigator(Kenkyū-buntansha) MORIMOTO Akira  Faculty of Education, Assistant, 教育学部, 助手 (50239688)
CHODA Hisashi  Faculty of Education, Professor, 教育学部, 教授 (00030338)
TANUMA Kazumi  Gumma University, Faculty of Engineering, Associate Professor, 工学部, 助教授 (60217156)
TAKEUCHI Jiro  Science University of Tokyo, Faculty of Industrial Science and Technology, 基礎工学部, 教授 (80082402)
NAGASE Michihiro  Osaka University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (70034733)
中井 英一  大阪教育大学, 教育学部, 助教授 (60259900)
萬代 武史  大阪電気通信大学, 工学部, 教授 (10181843)
Project Period (FY) 2001 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥3,400,000 (Direct Cost: ¥3,400,000)
Fiscal Year 2002: ¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 2001: ¥1,800,000 (Direct Cost: ¥1,800,000)
Keywordsmicrolocal analysis / wavelet frame / multiwavelet / filter / time frequency analysis / wavelet analysis / image processing / フレーム / ウェーブレット
Research Abstract

Our orthonormal multiwavelet bases, which can decompose functions in the Hilbert space L^2(R^n) microlocally, are shown to be a "stepwise" unconditional basis in L^p(R^n) (1<p<∞) and other related spaces. As part of the proof, an elementary proof of the L^p(R^n) version of the sampling theorem with unconditional convergence is given. Finally, an application is given to the expression of some distributions as sums of boundary values of holomorphic functions.
Orthogonal multiwavelets, whose Fourier transforms consist of characteristic functions of squares or sectors of annuli, are constructed in the Fourier domain and are shown to satisfy a multiresolution analysis with several choices of scaling functions. Redundant smooth tight wavelet frames are obtained and these nonorthogonal frame wavelets can be generated by two-scale equations from, a multiresolution analysis. Singularities can be localized in position and direction and the original images can be restored from the scarred images.

Report

(3 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • Research Products

    (26 results)

All Other

All Publications (26 results)

  • [Publications] R.ASHINO (共著): "Smooth tight frame wavelets and image microlocal analysis in Fourier domain"Computers Math.Applic.. (to appear.). (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] R.ASHINO (共著): "Wavelet bases for microlocal filtering and the sampling theorem in L_p(R^n)"Applicable Anal.. 82. 1-24 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] R.ASHINO (共著): "Microlocal analysis, smooth frames and denoising in Fourier space"Asian Information-Science-Life. 1. 153-160 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] R.ASHINO (共著): "Multiwavelets, pseudodifferential operators and microlocal analysis"AMS/IP Stud.Adv.Math.. 25. 9-20 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] R.ASHINO (共著): "Microlocal filtering with rnultiwavelets"Computers Math.Applic.. 41. 111-133 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] R.ASHINO (共著): "Microlocal analysis and multiwavelets"Geometry, Analysis and Applications (Varanasi, 2000). 293-302 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 榊原 進, 萬代 武史, 芦野 隆一: "ウェーヴレットと直交関数系(翻訳)"東京電機大学出版局. 308 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] R. Ashino, S. J. Desjardins, C. Heil, M. Nagase, R. Vaillancourt: "Smooth tight frame wavelets and image microlocal analysis in Fourier domain"Computers Math. Applies.. to appear.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] R. Ashino, T. Mandai: "Wavelet bases for microloeal filtering and the sampling theorem in L_p(R^n)"Applicable Anal.. 82. 1-24 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] R. Ashino, S. J. Desjardins, C. Heil, M. Nagase, R. Vaillancourt: "Microlocal analysis, smooth frames and denoising in Fourier space"Asian Information-Science-Life. 1. 153-160 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] R. Ashino, C. Heil, M. Nagase, R. Vaillancourt: "Multi-wavelets, pseudodifferential operators and microlocal analysis"AMS/IP Stud. Adv. Math.. 25. 9-20 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] R. Ashino, C. Heil, M. Nagase, R. Vaillancourt: "Microlocal analysis and multiwavelets"Geometry, analysis and applications (Varanasi, 2000), World Sci. Publishing. 293-302. (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] R. Ashino, C. Heil, M. Nagase, R. VaiUancourt: "Microlocal filtering with multiwavdets"Computers Math. Applic.. 41. 111-133 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] S. Sakakibara, T. Mandai, R. Ashino: "Wavelets and other orthogonal systems, (translation into Japanese)"Tokyo Denkidai University Press. 308 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] R.ASHINO(共著): "Pre-processing design for multiwavelet filters using neural networks"Proceedings of the third international conference on wavelet analysis and its applications, World Scientific. (to appear).

    • Related Report
      2002 Annual Research Report
  • [Publications] R.ASHINO(共著): "Smooth tight frame wavelets and image microanalysis in the Fourier domain"Computers Math. Applic.. (to appear).

    • Related Report
      2002 Annual Research Report
  • [Publications] R.ASHINO(共著): "Fatigue damage evaluation of adhesively bounded butt jiont with rubber-modified epoxy adhesive"J. Adhesion Sci. and Tech.. (to appear).

    • Related Report
      2002 Annual Research Report
  • [Publications] R.ASHINO(共著): "Wavelet basses for microlocal filtering and the sampling theorem in L_p(R^n)"Applicable Analysis. 82. 1-24 (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] R.ASHINO(共著): "Microlocal analysis, smooth frames and denoising in Fourier space"J. of Asian Information-Science-Life. 1. (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] R.ASHINO(共著): "Multiwavelets, pseudodifferential operators and microlocal analysis"Wavelet Analysis and Applications, AMS/IP Studies in Advanced Mathematics. 25. 9-20 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] R.ASHINO(共著): "Microlocal filtering with multiwavelets"Computers Math.Applic.. 41. 111-133 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] R.ASHINO(共著): "Microlocal analysis and multiwavelets"Proceedings of the International Conference on Geometry, Analysis and Applications (Varanasi, 2000). 293-302 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] R.ASHINO(共著): "Multiwavelets, pseudodifferential operators and microlocal analysis"Wavelet Analysis and Applications, AMS/IP Studies in Advanced Mathematics. 25. (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] K.TANUMA(共著): "Local determination of conductivity at the boundary from the Dirichlet to Neumann map"Inverse Problems. 17. 405-419 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] K.TANUMA(共著): "Direct determination of the derivatives of conductivity at the boundary from the localized Dirichlet to Neumann map"Communications of the Korean Mathematical Society. 16. 415-425 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 榊原進, 萬代武史, 芦野隆一: "ウェーヴレットと直交関数系(翻訳)"東京電機大学出版局. 308 (2001)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2021-08-20  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi