• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of Smoothing Effects and Related Problems

Research Project

Project/Area Number 13640187
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionHimeji Institute of Technology

Principal Investigator

HOSHIRO Toshihiko  Himeji Institute of Technology, Faculty of Science, Professor, 大学院・理学研究科, 教授 (40211544)

Co-Investigator(Kenkyū-buntansha) UMEDA Tomio  Himeji Institute of Technology, Faculty of Science, Professor, 大学院・理学研究科, 教授 (20160319)
IWASAKI Chisato  Himeji Institute of Technology, Faculty of Science, Professor, 大学院・理学研究科, 教授 (30028261)
AKAHORI Tatsuo  Himeji Institute of Technology, Faculty of Science, Professor, 大学院・理学研究科, 教授 (40117560)
SUGIMOTO Mitsuru  Osaka University, Graduate School of Science, Assistant Professor, 大学院・理学研究科, 助教授 (60196756)
HIRANO Katsuo  Himeji Institute of Technology, Faculty of Science, Lecturer, 大学院・理学研究科, 講師 (90316034)
Project Period (FY) 2001 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥1,800,000 (Direct Cost: ¥1,800,000)
Fiscal Year 2003: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2002: ¥1,100,000 (Direct Cost: ¥1,100,000)
KeywordsPartial Differential Equations / Harmonic Analysis / Spectral Analysis / Smoothing Effect / Restriction Theorem / Limiting Absorption Principle
Research Abstract

In this project, we are concerned with smoothing properties of solutions to dispersive equations and related topics. Our approach is besed on not only methods of real analysis but also methods of the other areas, especially limiting absorption principle in spectral theory. Our subjects are smoothing effect of dispersive initial value problem, the Fourier restriction theorem of harmonic analysis, and the limiting absorption principle of spectral theory. All of these can be regarded as bounded properties of Fourier multipliers with singular symbols in some function spaces. So a method of one area might be useful to obtain new results of the other areas. This is the idea of how to make progress on this project.
Also we investigated our problems as pure mathematical ones, especially we considered what conditions are necessary for the smoothing effects. Thus our project can be regarded as the first step of research, which is analogous to the sophisticated research of Cauchy problems in 60's and 70's (which is initiated by the work of J.Hadamard in 20's, but the development of miclolocal analysis enabled results like Lax-Mizohata theorem).
In short, our results are as follows:
(1)We investigated the smoothing effect of dispersive initial value problems in the case of constant coefficients. We proved the smoothing effect occurs in the case where the principal symbol is not elliptic.
(2)We considered the necessary condition of the smoothing effect. We proved the condition for the gradient of the principal symbol is necessary for the maximal smoothing effect.
(3)We investigated the smoothing effects in Besov type function spaces.
(4)We introduced the approach using the boundednes property of Fourier integral operators in weighted L^2 Such approach will enable us to reduce the operator to prototype ones.
(5)We proved the unconditional convergence of wavelet expansion in L^p space, even the mother wavelet is weakly localized as Shannon's wavelet.

Report

(4 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • 2001 Annual Research Report
  • Research Products

    (28 results)

All Other

All Publications (28 results)

  • [Publications] 保城寿彦: "The maximal smoothing effect of dispersive equations with constant coefficients"数理解析研究所講究録. 1255. 205-212 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 保城寿彦: "Global smoothing properties of dispersive equations with constant coefficients"Proceedings of 3^<rd> ISAAC Congress (World Scientific). II. 971-976 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 保城寿彦: "Decay and regularity for dispersive equations with constant coefficients"Journal d'Analyse Math'ematique. vol.91. 211-230 (2004)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 保城寿彦: "ウェーブレット展開の無条件収束性について"数理解析研究所講究録. (掲載予定). (2004)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 杉本充: "A smoothing property of Schroedinger equations along the sphere"Journal d'Analyse Math'ematique. vol.89. 15-30 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 杉本充(with Michael Ruzhansky): "Global L^2 estimates for a class of Fourier integral operators with symbols in Resov spaces"Russian Mathematical Surveys. (掲載予定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Toshihiko Hoshiro: "The maximal smoothing effect of dispersive equations with constant coefficients"Suurikaisekikenkyusho-Koukyouroku. 1255. 205-212 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Toshihiko Hoshiro: "Global smoothing properties of dispersive equations with constant coefficients"Progress in Mathematics" Proceedings of the 3rd International ISAAC Congress. 971-976 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Toshihiko Hoshiro: "Unconditional convergence of wavelet expansions"Suurikaisekikenkyusho-Kokyuroku. (To appear). (2004)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Toshihiko Hoshiro: "Decay and regularity for dispersive equations with constant coefficients"Journal d' Analyze Mathematique. vol.91 (To appear). (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Tomio Umeda: "The action of √<-Δ> on weighted Sobolev spaces"Letters in Mathematical Physics. vol.54. 301-313 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Tomio Umeda: "Eigenfunction expansion associated with relativistic Schroedinger operators"Operator Theory Advances and Applications. vol.126. 315-319 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Chisato Iwasaki: "Applications of symbolic construction of the fundamental solution"Suurikaisekikenkyusho-Koukyuroku. Vol.1315. 118-136 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Katsuhiro Hirano: "On the maximum of a diffusion process in a random Levy environment"Seminaire de Probabilites XXXVII (Lecture Notes in Mathematics 1832). 216-235 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Mitsuru Sugimoto: "A weak extension theorem for inhomogeneous differential equations"Forum Mathematics. vol.13. 323-334 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Mitsuru Sugimoto: "A global smoothing property of generalized Schroedinger equations along the sphere"Journal d' Analyze Mathematique. vol.89. 15-30 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 保城寿彦: "Global smoothing properties of dispersive equations with constant coefficients"Proceedings of 3^<rd> ISAAC Congress (World Scientific). II. 971-976 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 保城寿彦: "ウェーブレット展開の無条件収束性について"数理解析研究所講究録. (掲載予定). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] 保城寿彦: "Decay and regularity for dispersive equations with constant coefficients"Journal d'Analyse Math'ematique. Vol.91. 211-230 (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] 杉本充: "A smoothing property of Schroedinger equations along the sphere"Journal d'Analyse Math'ematique. Vol.89. 15-30 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 杉本充(with Michael Ruzhansky): "Global L^2 estimates for a class of Fourier integral operators with symbols in Besov spaces"Russian Mathematical Surveys. (掲載予定).

    • Related Report
      2003 Annual Research Report
  • [Publications] 保城寿彦: "The maximal smoothing effect of dispersive equations with constant coefficients"数理解析研究所講究録"スペクトル・散乱理論とその周辺". 1255. 205-212 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 保城寿彦: "Decay and regularity for dispersive equations with constant coefficients"Journal d'Analyse Mathematique. (出版予定).

    • Related Report
      2002 Annual Research Report
  • [Publications] 保城寿彦: "Global smoothing properties of dispersive equations with constant coefficients"Proceedings of 3^<rd> ISAAC Congress (World Scientific). (出版予定).

    • Related Report
      2002 Annual Research Report
  • [Publications] 保城寿彦: "Global smoothing properties of dispersive equations with constant coefficients"Proceedings of 3^<rd> ISAAC Congress (World Scientific). (出版予定). (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] 保城寿彦: "The maximal smoothing effect of dispersive equations with constant coefficients"数理解析研究所講究録"スペクトル・散乱理論とその周辺". (出版予定). (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] 楳田登美男: "Eigenfunction expansion associated with relativistic Schroedinger operators"Operator theory advances and applications. 126. 315-319 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 杉本充: "A weak extension theorem for inhomogeneous differential equations"Forum Mathematicum. 13. 323-334 (2001)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2021-09-01  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi