• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Multi-Scale Analysis of Differential Equations for Many Particle System

Research Project

Project/Area Number 13640207
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionYOKOHAMA NATIONAL UNIVERSITY

Principal Investigator

UKAI Seiji  Yokohama National Univ., Faculty of Engineering, Prof., 大学院・工学研究院, 教授 (30047170)

Co-Investigator(Kenkyū-buntansha) SHIOJI Naoki  Yokohama National Univ., Faculty of Environment Info.Sci., associate Prof., 大学院・環境情報研究院, 助教授 (50215943)
HIRANO Norimiti  Yokohama National Univ., Faculty of Environment Info.Sci., Prof., 大学院・環境情報研究院, 教授 (80134815)
KONNO Norio  Yokohama National Univ., Faculty of Engineering, Associate Prof., 大学院・工学研究院, 助教授 (80205575)
MORIMOTO Hirtoko  Keio Univ., Faculty of Engineering, Prof., 理工学部, 教授 (50061974)
TANI Atusi  Keio Univ., Faculty of Engineering, Prof., 理工学部, 教授 (90118969)
Project Period (FY) 2001 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2003: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2002: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2001: ¥1,500,000 (Direct Cost: ¥1,500,000)
KeywordsBoltzmann-Grad Limit / Cauchy-Kovalevskaya Theorem / Boltzmann equation / fluid equation / multi-scale analysis / asymptotic analysis / boundary layer solution / solvability condition / 半無限空間境界値問題 / 境界層 / 定常解 / 漸近安定性 / Milne問題 / BBGKY Hierachy / Boltzmann-Grad極限 / 抽象的Cauchy-Kovalevskaya定理 / 半無限空間定常問題
Research Abstract

1.Derivation of Uniform Estimates for the Boltzmann-Grad Limits : The Newton equation of motion for the many-particle system gives rise to the Boltzmann equation in the limit of two scale parameters, the number of particles N and the radius of the particle r, as N→∞ and r→0, under the condition Nr^2=constant. The mathematical proof of this convergence was proven by O.Lanford (1975), the most crucial part of which is the uniform estimates in N and r for the solutions of the Newton equation. We showed that the technique of the abstract version of Cauchy-Kovalevskaya theorem can give improved estimates.
2.Establishment of the solvability condition of the nonlinear boundary layer problem of the Boltzmann Equation : The most basic boundary layer is the solution of the boundary value problem in the half-space. However, the problem is not unconditionally solvable because the boundary condition at infinity is over-determined. We established the solvability condition on the boundary data. More precisely, we showed that the number of restrictions on the boundary data depends on the Mach number M at infinity, as 5 for M>1,4 for <M<1,1 for -1<M<0 and 0 for M<-1. The proof relies on sharp a priori estimates of solutions, which is obtained by use of a proper weight function and by introduction of a new artificial damping term.
3.Proof of the stability of the nonlinear boundary layer. We proved that the stationary solutions obtained above are exponentially stable for the case M<-1,. First, the exponential decay is established for the linearized equation, using the energy method, and then the nonlinear stability is established by the contraction mapping principle.
4.Asymptotic analysis of Fluid equations : The uniform estimates of solutions needed in establishing asymptotic relations between various fluid equations are derived by a unified method based on the abstract Cauchy-Kovalevskaya technique introduced in 1.

Report

(4 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • 2001 Annual Research Report
  • Research Products

    (28 results)

All Other

All Publications (28 results)

  • [Publications] Seiji Ukai: "Asymptotic Analysis of Fluid Equations"Lecture Notes in Math.,Springer. (発行予定). (2004)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Seiji Ukai, Tong Yang, Shi-Hsien Yu: "Nonlinear Stability of Boundary Layers of the Boltzmann Equation,I. The case of M^∞<-1"Commun.Math.Phys.. 244. 99-109 (2004)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Seiji Ukai, Tong Yang, Shi-Hsien Yu: "Nonlinear Boundary Layers of the Boltzmann Equation : I. Existence"Commun.Math.Phys.. 236. 373-393 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Seiji Ukai: "Nonlinear Boundary Layers of the Boltzmann Equation"Proc.Ninth International Conference on Hyperbolic Problem, Theory, Numerics, Applications (Eds, E.Tadmor and T.Hou),Springer. 103-110 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Seiji Ukai: "Boltzmann-Grad Limit and Cauchy-Kovalevskaya Theorem"Japan Journal Industrial Appl.Math.. 18. 383-393 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Seiji Ukai: "Asymptotic Analysis of Fluid Equation"Lecture Notes in Math.(Springer). (To appear). (2004)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Seiji Ukai, Tong Yang, Shi-Hsien Yu: "Nonlinear Stability of Boundary Layers of the Boltzmann Equation, I The case of M^∞ <-1"Commun.Math.Phys.. 244. 99-109 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Seiji Ukai, Tong Yang, Shi-Hsien Yu: "Nonlinear Boundary Layers of the Boltzmann Equation : I.Existence"Commun.Math.Phys.. 236. 373-393 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Seiji Ukai: "Nonlinear Boundary Value Problem of the Boltzmann equation"Proc.Ninth International Conference on Hyperbolic Problem, Theory, Numerics Applications (Eds, E.Tadmor and T.Hou)(Springer). 103-110 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Seiji Ukai: "Boltzmann-Crad Limits and Cauchy-Kovalevskaya Theorem"Japan J.Industrial Appl.Math.. 18. 383-393 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Seiji Ukai, Tong Yang, Shih-Hsien Yu.: "Nonlinear stability of boundary layers of the Boltzmann equation. 1. The case M<-1"Commun.Math.Phys.. (2004年度掲載予定). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] Seiji Ukai, Tong Yang, Shih-Hsien Yu.: "Nonlinear boundary layers of the Boltzmann equation"Commun.Math.Phys.. 236. 373-393 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Seiji Ukai, Tong Yang, Shih-Hsien Yu.: "Nonlinear boundary layers of the Boltzmann equation"Hyperbolic Problems : Theory, Numerics Applications : Proc.Ninth Int'l Conf.on Hyperbolic Problems, CalTech., Pasade March 25-29,2002 (Ed.. T.Y.Hou, E.Tadmor,), Springer, Berlin. 103-110 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Hiromichi Itho, Naoto Tanaka, Atusi Tani: "The initial value problem for the Navier-Stokes equations with general slip boundary condition in Holder spaces"J.Math Fluid Mech.. 5. 275-301 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Naoto Tanaka, Atusi Tani: "Surface waves for a compressible viscous fluid"J.Math. Fluid Mech.. 5. 303-363 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Norio Konn, Takao Namiki, Takahiro Soshi, Aidan Sudbury: "Absorption problems for quantum walks in one dimension"J.Phys.A.. 36. 241-253 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Seiji Ukai: "Nonlinear boundary layers of the Boltzmann equation"Commun. Math. Phys.. (2003年発表予定). (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] Norimichi Hirano, Naoki Shioji: "Subharmonic and multiple subharmonic solutions for second order differential systems"Differential Integral Equations. 16-1. 95-110 (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] Norio Konno: "Self-duality for multi-state probabilistic cellular automata with finite range interactions"J. Statist. Phys.. 106-.5-6. 923-930 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Masao Ogawa, Atusi Tani: "Free boundary problem for an incompressible ideal fluid with surface tension"Math. Models Methods Appl. Sci.. 12-12. 1725-1740 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Masaki Kurokiba, Naoto Tanaka, Atusi Tani: "Existence of solution for Eguchi-Oki-Matsumura equation describing phase separation and order-disorder transition binary alloys"J. Math. Anal. Appl.. 272-2. 447-458 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Hiroko Morimoto: "A remark on the existence of steady Navier-Stokes flows in a certain two-dimensional infinite channel"Tokyo J. Math.. 16-1. 307-301 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Seiji Ukai: "Boltzmann-Grad Limit and Cauchy-Kovalevskaya Theorem"Japan J. Industrial Appl. Math.. Vol.18 No.2. 383-392 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Seiji Ukai, Shi-Hsien Yu, Tong Yan: "On the Half-space Problem of Boltzmann Equation"京都大学数理解析研究所講究録「流体と気体の数学解析」(2002年6月発表予定. (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] Seiji Ukai, Shi-Hsien Yu, Tong Yang: "On the Nonlinear Boundary Layers of the Boltzmann Equation"Abstract Book of HYP2002. Calfornia Institute of Technology(2002年3月発表予定). (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] Sarato Takahashi, Alex Yu.Tret-yakov, Norio Konno: "On Some Harris-FKG Type Correlation Inequalities dor a Non-Attractive Model"J.Statistical Phys.. Vol.102 No.5/6. 1429-1438 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Yoshiaki Kusaka, Atusi Tani: "Classical Solvability of the Two-Phase Stefan Problem in a Viscous Incompressible Fluid Flow"Math. Models Methods Appl. Sci. (2002年9月発表予定). (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] Hiroko Morimoto, Hiroshi Fujita: "Stationary Navier-Stokes Flow in 2-Dimensional Y-Shaped Channelunder General Outflow Condition"The Navier-Stokes Equations : Theory and Numerical Methods(ed. R. Salvi), Marcel Dekker Inc., New York-Basel. 65-72 (2001)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi