• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Information separation via phasor neural networks and its application

Research Project

Project/Area Number 13650402
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 情報通信工学
Research InstitutionThe University of Electro-Communications

Principal Investigator

TAKAHASHI Haruhisa  The University of Electro-Communications, Information and Communication Engineering, Professor, 電気通信学部, 教授 (90135418)

Co-Investigator(Kenkyū-buntansha) HOTTA Kazuhiro  The University of Electro-Communications, Information and Communication Engineering, Research Associate, 電気通信学部, 助手 (40345426)
ITAKURA Naoaki  The University of Electro-Communications, Information and Communication Engineering, Associate Professor, 電気通信学部, 助教授 (30223069)
KAWABATA Tsutom  The University of Electro-Communications, Information and Communication Engineering, Professor, 電気通信学部, 教授 (50152997)
Project Period (FY) 2001 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2003: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 2002: ¥1,400,000 (Direct Cost: ¥1,400,000)
Fiscal Year 2001: ¥1,600,000 (Direct Cost: ¥1,600,000)
KeywordsCovariance / Mean field approximation / Complex neuron / Support vector machine / Markov random field / 位相 / ボルツマンマシン / SVM
Research Abstract

The research was performed to develop the artificial neural network models for explaining and resolving the mammalian brain function. We proposed the covariance field neural network model which is a natural extension of the classical analogue neural network model, and gives a mean field approximation to Markov random fields. The covariance field neural network can represent the covariance of spike timing as the phase difference, which is important in brain information processing, and can perform information processing based on spike timing. As a mean field approximation it gives much better approximation accuracy for Markov random fields even for the large weight strength compared with the naive mean field model. We performed computer experiments to support this. We also applied this model to image segmentation, and confirmed the segmentation capability with phase-difference. We proposed the mean field learning for Boltzmann machine, and performed some fundamental experiments to confirm the quick training speed for the phase.
On the other hand, we proposed the efficient learning methods for neural netoworks, especially for the recently highlighted support vector machine(SVM). We extended SVM learning to the efficient multi-class algorithm, and apply the second order cone programming method to SVM learning. In addition we proposed the maximal margin classifier based on the geometric method, which behaves faster than the quick SVM known as SMO. Finally we proposed a new learning machine based on the kernel PCA, which can automatically determine the kernel parameter so that it can realize the no free parameter learning machine.

Report

(4 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • 2001 Annual Research Report
  • Research Products

    (28 results)

All Other

All Publications (28 results)

  • [Publications] I.V.Mayer: "Imaginary Motor Movement EEG Classification by Accumulative-Autocorrelation-Pulse"Electromyography and Clinical Neurophsiology. 41. 159-169 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Rameswer Debnath: "A New Approach to Structural Learning of Neural Networks"IEICE Trans.Fundamentals. (to appear). (2004)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Takahashi: "Covariance Phasor Neural Network as a mean field model"Proc.International Joint Confedrence of Neural Networks. 2923-2928 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Takahide Nogayama: "Generalization of kernel PCA and Automatic Paremeter Tuning"The 8th Australian and New Zealand Intelligent Information Systems Conference. 173-178 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 高橋治久: "位相ニューラルネットと平均場近似"電子情報通信学会技術研究報告. NC 2003-53. 43-48 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 向山 学: "幾何学的学習アルゴリズムによる最大マージン識別法"電子情報通信学会技術研究報告. NC2003-114. 37-42 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] I.V.Mayer, H.Takahahi, K.Sakamoto: "Imaginary Motor Movement EEG Classification by Accumulative-Autocorrelation-Pulse"Electromyography and Clinical Neurophsiology. 41. 159-169 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Rameswer Debnath, H.Takahashi: "A New Approach to Structural Learning of Neural Networks"IEICE Trans.Fundamentals. (to appear). (2004)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Takahashi: "Covariance Phasor Neural Network"Proc.International Joint Confedrence of Neural Networks. 2923-2928 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Rameswer Debnath, H.Takahashi: "Enlarging the Marginal Space of Suooprt Vector Machine"The 3rd International Conference on Neural Networkd and Artifical Intelligence, Nov.12-14, Minsk, Belarus. (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Takahide Nogayama, H.Takahashi, Masakazu Muramatsu: "Genetalization of kernel PCA and Automatic Paremeter Tuning"The 8th Australian and New Zealand Intelligent Information Systems Conference, Macquarie University, Sydney, Australia. (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Rameswer Debnath, H.Takahashi: "A Fast Learning Decision-Based SVM for Multi-Class Problems"ICMLA'03 (Proceedings of the International Conference of Machine Learning and Applications). 128-134 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Rameswer Debnath: "A New Approach to Structural Learning of Neural Networks"IEICE Trans(電子情報通信学会英文論文誌). (未定). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] Rameswer Debnath: "A Fast Learning Decision-Based SVM for Multi-Class Problems"Proceedings of the International Conference of Machine Learning and Annlications. 128-134 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Takahide Nogayama: "Genetalization of kernel PCA and Automatic Parameter Tuning"The 8th Australian and New Zealand Intelligent Information Systems Conference. 173-178 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 向山 学: "幾何学的学習アルゴリズムによる最大マージン識別法"電子情報通信学会技術研究報告. NC2003-114. 37-42 (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] 高橋治久: "位相ニューラルネットと平均場近似"電子情報通信学会技術研究報告. NC2003-101. 49-54 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 野ヶ山尊秀: "カーネル主成分分析の一般化及びパラメタ自動決定法の提案"電子情報通信学会技術研究報告. NC2003-53. 43-48 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 向山学: "サポートベクトルマシンとラグランジュ法との性能比較"電子情報通信学会全国大会. 2002/03. 50 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 野ヶ山尊秀: "マルチクラスサポートベクトルマシンの実現"電子情報通信学会全国大会. 2002/03. 51 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 三浦康秀: "ボルツマンマシンによる日本語係り受け解析"数理モデル化と問題解決. 39-5. 17-20 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] H.Takahashi: "Covariance Phasor Neural Network"International Joint Conference of Neural Networks. 2923-2928 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Rameswer Debnath: "Learning capability : Classical RBF Network vs. SVM with Gaussian Kernel"International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE. 293-302 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] H.Takahashi: "Phasor Neural Network as a mean field model"Proc. International Confedrence on neural information processing. (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 塚本 直樹: "構造化学習とサポートベクトルマシンの性能比較"電子情報通信学会技術研究報告. NC2001-29. 49-55 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] P.Debnath: "Classical RBF Network vs SVM with Gaussian Kernel"Proc. Of the 15^<th> Int. Conf. Of Artificial Intelligence and Expart Svstems. (予定). (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] I.V.Mayer: "Imaginary Motor Movemet EEG Classification by Accumulative-Autocorrelation-Pulse"Electromyography and OlinicaI Neurophsiology. 41. 159-169 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] H.Takahashi: "Covariance Phasor Neural Network"2002 World Congress on Computational Intelligence. (予定). (2002)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi