• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on Unified Discovery of Exceptions from Massive Data

Research Project

Project/Area Number 13680436
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionYokohama National University

Principal Investigator

SUZUKI Einoshin  Yokohama National University, Faculty of Engineering, Associate Professor, 大学院・工学研究院, 助教授 (10251638)

Project Period (FY) 2001 – 2002
Project Status Completed (Fiscal Year 2002)
Budget Amount *help
¥4,200,000 (Direct Cost: ¥4,200,000)
Fiscal Year 2002: ¥1,200,000 (Direct Cost: ¥1,200,000)
Fiscal Year 2001: ¥3,000,000 (Direct Cost: ¥3,000,000)
KeywordsException Discovery / Outlier Detection / Boosting / Exception Rule Discovery / Classification / Data Mining / 機械学習 / ルール発見 / 発見基礎論
Research Abstract

The objective of this research is to study and develop a data mining method which discovers interesting exceptions from massive data in a uniform way based on various learning methods, and to justify its effectiveness by experiments with real data sets.
The progress in fiscal year 2001 consists of the followings. (1) Development and refinement of various exception discovery methods including those based on support vector machines, bloomy decision tree, exception rule discovery, and boosting. We mainly worked on data squashing in order to cope with massive data. (2) Experimental evaluation of the developed exception discovery methods. We also summarized data mining contests each of which represents an occasion of systematic evaluation for various knowledge discovery methods with a set of common problems. (3) Planning and investigation of a unified exception discovery method. We also performed a novel type of worst-case analysis of rule discovery as a foundation of automated discovery.
In fiscal year 2002, we first developed a unified exception rule discovery and implemented it on computers. Important issues in the integration include usefulness of discovered knowledge and effectiveness of the approach based on the experimental results in the previous fiscal year, In the development, each exception discovery method was refined if necessary. According to the results of preliminary experiments, we have chosen the unified exception discovery method which employs exception rule discovery method and outlier detection method based on boosting as our final system among the exception discovery methods developed and refined in the last fiscal year. In the latter half of this fiscal year, we performed final experiments in which we applied the implemented unified exception discovery method to preprocessed massive data.

Report

(3 results)
  • 2002 Annual Research Report   Final Research Report Summary
  • 2001 Annual Research Report
  • Research Products

    (30 results)

All Other

All Publications (30 results)

  • [Publications] 鈴木英之進: "サポートベクターマシンに基づく医療データからの事例発見"オペレーションズ・リサーチ. 46・5. 243-248 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 鈴木英之進: "データマイニングコンテスト 編集にあたって"情報処理. 42・5. 443-444 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 鈴木英之進: "日本・アジアにおけるデータマイニングコンテスト"情報処理. 42・5. 457-461 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Einoshin Suzuki: "Bloomy Decision Tree for Multi-Objective Classification"Principles of Data Mining and Knowledge Discovery, LNAI, Springer. 2168. 436-447 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Einoshin Suzuki: "Worst-Case Analysis of Rule Discovery"Discovery Science, LNAI, Springer. 2226. 365-377 (2001)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 鈴木英之進: "例外ルールの発見"システム制御情報学会論文誌. 13・4. 197-202 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Einoshin Suzuki: "In Pursuit of Interesting Patterns with Undirected Discovery of Exception Rules"Progresses in Discovery Science, Lecture Notes in Computer Science, State-of-the-Art Surveys. 2281. 504-517 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Yuu Yamada: "Toward Knowledge-Driven Spiral Discovery of Exception Rules"Proc. 2002 IEEE International Conference on Fuzzy Systems. 2. 872-877 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Shutaro Inatani: "Data Squashing for Speeding up Boosting-Based Outlier Detection"Foundations of Intelligent Systems, Lecture Notes in Artificial Intelligence. 2366. 601-611 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Einoshin Suzuki: "Instance Discovery from Medical Data Based on Support Vector Machines"Journal of the Operations Research Society of Japan. 46-5. 243-248 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Einoshin Suzuki: "Data Mining Contests"IPSJ Magazine (in Japanese). 42-5. 443-444 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Einoshin Suzuki: "Data Mining Contests in Japan and Asia"IPSJ Magazine (in Japanese). 42-5. 457-461 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Einoshin Suzuki: "Discovery of Exception Rules"Systems, Control, and Information (in Japanese). 46-4. 197-202 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Yuu Yamada: "Toward Knowledge-Driven Spiral Discovery of Exception Rules"Proc. 2002 IEEE international Conference on Fuzzy Systems. 2. 872-877 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Einoshin Suzuki: "Bloomy Decision Tree for Multi-Objective Classification , Principles of Data Mining and Knowledge Discovery, LNAI"Springer. 2168 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Einoshin Suzuki: "Worst-Case Analysis of Rule Discovery , Discovery Science, LNAI"Springer. 2226 (2001)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Einoshin Suzuki: "In Pursuit of Interesting Patterns with Undirected Discovery of Exception Rules , Progresses in Discovery Science, LNCS, State-of -the-Art Surveys"Springer. 2281 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] Shutaro Inatani: "Data Squashing for Speeding up Boosting-Based Outlier Detection , Foundations of Intelligent Systems, LNAI"Springer. 2366 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2002 Final Research Report Summary
  • [Publications] 鈴木英之進: "例外ルールの発見"システム制御情報学会論文誌. 13・4. 197-202 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Einoshin Suzuki: "In Pursuit of Interesting Patterns with Undirected Discovery of Exception Rules"Progresses in Discovery Science, Lecture Notes in Computer Science, State-of-the-Art Surveys. 2281. 504-517 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Yuu Yamada: "Toward Knowledge-Driven Spiral Discovery of Exception Rules"Proc. 2002 IEEE International Conference on Fuzzy Systems. 2. 872-877 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Shutaro Inatani: "Data Squashing for Speeding up Boosting-Based Outlier Detection"Foundations of Intelligent Systems, Lecture Notes in Artificial Intelligence. 2366. 601-611 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 鈴木英之進: "サポートベクターマシンに基づく医療データからの事例発見"オペレーションズ・リサーチ. 46・5. 243-248 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 鈴木英之進: "データマイニングコンテスト編集にあたって"情報処理. 42・5. 443-444 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 鈴木英之進: "日本・アジアにおけるデータマイニングコンテスト"情報処理. 42・5. 457-461 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Einoshin Suzuki: "Bloomy Decision Tree for Multi-Objective Classification"Principles of Data Mining and Knowledge Discovery, LNAI, Springer. 2168. 436-447 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Einoshin Suzuki: "Worst-Case Analysis of Rule Discovery"Discovery Science, LNAI, Springer. 2226. 365-377 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] 鈴木英之進: "例外ルールの発見"システム制御情報学会論文誌. 13・4(印刷中). (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] Yuu Yamada: "Toward Knowledge-Driven Spiral Discovery of Exception Rules"Proc. 2002 IEEE International Conference on Fuzzy Systems. (印刷中). (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] Shutaro Inatani: "Data Squashing for Speeding up Boosting-Based Outlier Detection"Proc. 13th Int' 1 Symposium on Methodologies for Intelligent Systems. (印刷中). (2002)

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi