• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

捩れをもつ接続の幾何学

Research Project

Project/Area Number 13874010
Research Category

Grant-in-Aid for Exploratory Research

Allocation TypeSingle-year Grants
Research Field Geometry
Research InstitutionOsaka University

Principal Investigator

満渕 俊樹  大阪大学, 大学院・理学研究科, 教授 (80116102)

Co-Investigator(Kenkyū-buntansha) 大津 幸男  九州大学, 大学院・数理学研究科, 助教授 (80233170)
藤原 彰夫  大阪大学, 大学院・理学研究科, 助教授 (30251359)
作間 誠  大阪大学, 大学院・理学研究科, 助教授 (30178602)
Project Period (FY) 2001 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥2,000,000 (Direct Cost: ¥2,000,000)
Fiscal Year 2003: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2002: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2001: ¥600,000 (Direct Cost: ¥600,000)
Keywordsハミルトン正則ベクトル場 / multiplier-Hermition計量 / 「捩れのある」エルミート接続 / Myersの直径有界性定理 / Kahler-Ricci soliton / 熱核評価の方法 / グリーン関数 / Kahler-Einstein計量 / multiplier-Hermitian計量 / Meyerの直径有界性定理 / multiplier Hermitian 計量
Research Abstract

Kahler-Ricci solitonのように、ケーラー幾何の枠組みを少しひろげて、捩れが零でない場合をうまく扱える場合があります。たとえばZhuらの目覚しい結果で、トーリック・ファノ多様体上Kahler-Ricci solitonの存在を示すことによって、二木指標が消えるトーリック・ファノ多様体に常にKahler-Einstein計量が入る事が最近示されたという事実があります。このKahler-Ricci solitonをもっと一般化したmultiplier-Hermition計量というものの幾何学を組織的系統的にとらえ、その一般論を展開しました。現在はKahler-Ricci solitonの存在や一意性を考えるだけでなくその種々の応用を考えるという段階に進んでいます。上に挙げたトーリック・ファノ多様体に対する結果がその代表的な例ですが、同様の応用をmultiplier Hermition多様体に対しても行うことを模索しているというのが現在の状況です。

Report

(3 results)
  • 2003 Annual Research Report
  • 2002 Annual Research Report
  • 2001 Annual Research Report
  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] T.Mabuchi: "Multiplier Hermitian structures on Kahler manifolds"Nagoya Math.J.. 170. 1-43 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] T.Mabuchi: "An obstruction to asymptotic semistability and approximate critical metrics"Osaka J.Math.. 41(掲載予定). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] A.Fujiwara: "Quantum parameter estimation of a generalized Pauli channel"J.Physics A. 36. 8093-8103 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] T.Mabuchi, Y.Nakagawa: "The Bando-Calabi-Futaki character as an obstruction to semistability"Math.Ann.. vol.324. 187-193 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] A.Futaki, T.Mabuchi: "Moment maps and symmetric multilinear bilinear forms associated with symplectic classes"Asian J.Math.. 349-372 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Mabuchi: "A theorem of Calabi-Matsushima's type"Osaka J.Math.. vol.39. 49-57 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Mabuchi: "Heat kernel estimates and the Green functions on multiplier Hermitian manifolds"Tohoku Math.J.. vol.54. 259-275 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Mabuchi: "A Topological albanese map of a higher order"Lecture Note Series in Math., Osaka Univ.. vol.7. 177-193 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Mabuchi, T.: "Vactor field energies and critical metrics on Kahler manifolds"Nagoya Math. J.. 162. 41-63 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Mabuchi, T.(with Y, Nakagawa): "An obstruction to semistability of manifolds"Proc. Japan Acad. 77. 47-49 (2001)

    • Related Report
      2001 Annual Research Report
  • [Publications] Mabuchi, T.: "A theorem of Calabi-Matsushimaz's type"Osaka J. Math. 39. 1-9 (2002)

    • Related Report
      2001 Annual Research Report
  • [Publications] Mabuchi, T.: "Heat Kernel estimates and the Green functions on multipliar Hermition manifolds"Tohoku Math. J.. (to appear).

    • Related Report
      2001 Annual Research Report

URL: 

Published: 2001-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi