• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

多項式写像および混合多項式写像の無限遠の特異点の位相的研究

Research Project

Project/Area Number 13F03014
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeSingle-year Grants
Section外国
Research Field Geometry
Research InstitutionTohoku University

Principal Investigator

石川 昌治  東北大学, 理学(系)研究科(研究院), 准教授 (10361784)

Co-Investigator(Kenkyū-buntansha) NGUYEN Thang  東北大学, 理学(系)研究科(研究院), 外国人特別研究員
NGUYEN Tat Thang  東北大学, 大学院理学研究科, 外国人特別研究員
Project Period (FY) 2013-04-01 – 2015-03-31
Project Status Completed (Fiscal Year 2014)
Budget Amount *help
¥2,300,000 (Direct Cost: ¥2,300,000)
Fiscal Year 2014: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2013: ¥1,200,000 (Direct Cost: ¥1,200,000)
Keywords特異点の変形 / 安定写像 / 混合多項式 / 複素特異点
Outline of Annual Research Achievements

Brieskorn型の平面曲線複素特異点の線形な実変形についての研究を行った。平面曲線複素特異点は複素変形によりモース特異点たちに変形されることは良く知られている。近年の複素特異点の視点からの実特異点の研究の発展により、モース特異点よりもさらに安定性の高い実特異点への変形の研究が重要になりつつある。本研究はその最初のステップと位置づけられる。
Brieskorn型特異点の線形な実変形の場合、混合多項式特異点における特異点集合の表記を用いることで、実変形後の特異点集合を自然にパラメータ表示することができる。これを利用して、変形した写像が一般には generic map と呼ばれる、写像の空間内で安定した性質をもつことを示した。さらに変形が generic map である場合について、そのカスプの数が (p+1)(q-1) と (p-1)(q+1) の間であることを示した。ここで (p,q) はBrieskorn多項式のベキを表す。カスプの数は三角関数を用いた関係式の根の数で記述される。特に p=q=2 の場合はモース特異点に対応し、その場合は線形な実変形のカスプの数は常に3であることが従う。
これらの特異点集合、特異値集合の具体的な記述は、将来、実変形から特異点の位相型、特にモノドロミーの情報を読み取る上で重要な役割を果たす。また、無限遠の特異点に対しては、それをコンパクト化することで局所的な特異点と見なすことができるので、これまでの結果を有理関数が定める写像の複素特異点に拡張することで考察を進めることが可能となる。

Research Progress Status

26年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

26年度が最終年度であるため、記入しない。

Report

(2 results)
  • 2014 Annual Research Report
  • 2013 Annual Research Report
  • Research Products

    (3 results)

All 2014

All Presentation (3 results) (of which Invited: 1 results)

  • [Presentation] On linear deformations of Brieskorn singularities of two variables into generic maps2014

    • Author(s)
      Nguyen Tat Thang
    • Organizer
      Singularity theory of differential maps and its applications
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2014-12-03
    • Related Report
      2014 Annual Research Report
  • [Presentation] On stable linear deformations of Brieskorn singularities of two variables2014

    • Author(s)
      Nguyen Tat Thang
    • Organizer
      The 2nd Franco-Japanese-Vietnamese Symposium on Singularities
    • Place of Presentation
      北海道大学
    • Year and Date
      2014-08-26
    • Related Report
      2014 Annual Research Report
    • Invited
  • [Presentation] Admissibility of local systems for some classes of line arrangements2014

    • Author(s)
      Nguyen Tat Thang
    • Organizer
      Seminar on Topology and Singularities
    • Place of Presentation
      首都大学東京
    • Year and Date
      2014-03-03
    • Related Report
      2013 Annual Research Report

URL: 

Published: 2014-01-29   Modified: 2024-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi