Project/Area Number |
13F03747
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 外国 |
Research Field |
Algebra
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
齋藤 秀司 (2014-2015) 東京工業大学, 理工学研究科, 教授 (50153804)
斎藤 秀司 (2013) 東京工業大学, 大学院理工学研究科, 教授
|
Co-Investigator(Kenkyū-buntansha) |
KELLY SHANE 東京工業大学, 理工学研究科, 外国人特別研究員
KELLY Shane 東京工業大学, 理工学研究科, 外国人特別研究員
SHANE Kelly 東京工業大学, 大学院理工学研究科, 外国人特別研究員
|
Project Period (FY) |
2013-04-26 – 2016-03-31
|
Project Status |
Completed (Fiscal Year 2015)
|
Budget Amount *help |
¥2,300,000 (Direct Cost: ¥2,300,000)
Fiscal Year 2015: ¥200,000 (Direct Cost: ¥200,000)
Fiscal Year 2014: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2013: ¥1,000,000 (Direct Cost: ¥1,000,000)
|
Keywords | モチーフ理論 / モチフィックコホモロジー / モチーフの理論 / 数諭的スキーム / Blochの高次Chow群 / ゼータ関数の特殊値 / 加藤予想 |
Outline of Annual Research Achievements |
The first result is to introduce a new homology theory for Voevodsky's category DM(k) of motives over a field k, which generalises the weight homology of Gillet-Soul'e, and the Kato-Suslin weight homology of Geisser. As a consequence of a theorem of Bondarko, we can obtain the following equivalence of categories. Theorem: The functor from the category of homological functors on DM(k) to the category of additive functors on Chow(k), the category of Chow morives, which is induced by the inclusion of Chow(k) to DM(k) induces an equivalence when restricted to the full subcategory of homological functors H satisfying the condition that H(M(X)[n]) = 0 when X is smooth and projective and n>0. Moreover, this functor recovers and generalises Gillet-Soul'e's weight homology, and the Kato-Suslin weight homology of Geisser. The second result is to compare motivic homology with 'etale motivic homology, in particular over a finite field. There is a canonical morphism from motivic homology of a motive M to its 'etale motivic homology \\alpha: H^M_i(C) \\to H^{M, et}_i(C). Theorem: Let p=ch(k). If k is algebraically closed the \\alpha^* is an isomorphism after inverting p. If k is finite, then one can compute the kernel and cokernel of \\alpha in terms of the weight homology of Gillet-Soul'e modulo p-torsion.
|
Research Progress Status |
27年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
27年度が最終年度であるため、記入しない。
|