収差補正TEMを用いたナノチューブリアクタにおけるナノ物質生成反応の直接観察
Project/Area Number |
13J03413
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 国内 |
Research Field |
Nanostructural science
|
Research Institution | Nagoya University |
Principal Investigator |
趙 思瀚 名古屋大学, 理学研究科, 特別研究員(PD)
|
Project Period (FY) |
2013-04-01 – 2016-03-31
|
Project Status |
Completed (Fiscal Year 2015)
|
Budget Amount *help |
¥3,300,000 (Direct Cost: ¥3,300,000)
Fiscal Year 2015: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2014: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2013: ¥1,100,000 (Direct Cost: ¥1,100,000)
|
Keywords | 2D materials / CVD / TMDs / 2D metals / hBN substrate / NbS2 / TMDCs / Superconductivity / in situ TEM / DWCNTs / high temperature TEM / coalescence of CNTs / inter-layer coupling / one-dimensional / optical transitions / excitons |
Outline of Annual Research Achievements |
Progress on researches of two-dimensional (2D) metals strongly relies on development of the growth technique. Studies on preparation of 2D metals have so far been limited, and this is in stark contrast to the situation of 2D semiconductors, where various layered semiconductors, including MoS2, WS2, MoSe2, WSe2, have been isolated in its monolayer form. In this work, we have developed a facile method to prepare 2D metallic transition metal dichalcogenides (TMDCs) by chemical vapor deposition (CVD) method, where direct growth of few-layered NbS2 (3R phase) on atomically flat hexagonal boron nitride (hBN) has been demonstrated. Structural characterization of the so-grown NbS2 was performed with atomic force microscopy, optical microscopy, electron microscopy and optical spectroscopy, revealing that the utilization of hBN as growth substrates is a key factor for the first successful CVD growth of 2D metallic TMDCs with large single-domain size (several µm). Electrical transport measurements have clearly shown that NbS2 atomic layers down to few-layer-thickness are metal. The current study opens up a new synthetic route for controllable growth of 2D layered metallic materials, which is of great importance in study of rich physics in 2D metals, as well as in search for novel 2D superconductors.
|
Research Progress Status |
27年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
27年度が最終年度であるため、記入しない。
|
Report
(3 results)
Research Products
(20 results)