Co-Investigator(Kenkyū-buntansha) |
馬場 卓也 広島大学, 大学院・国際協力研究科, 助教授 (00335720)
山口 武志 福岡教育大学, 教育学部, 助教授 (60239895)
植田 敦三 広島大学, 大学院・国際協力研究科, 助教授 (50168621)
岡崎 正和 上越教育大学, 学校教育学部, 助手 (40303193)
|
Budget Amount *help |
¥2,500,000 (Direct Cost: ¥2,500,000)
Fiscal Year 2002: ¥2,500,000 (Direct Cost: ¥2,500,000)
|
Research Abstract |
本研究の課題意職は,算数を数学に接続するという「教育内容と学習の適時性」について,一般化の視座から理論的に明確にすると同時に,実践的にも当該教材の意義を明らかにする点にある。いくつかある接続教材の中から,特に問題を含む「分数による除法」(以下「÷分数」)をとりあげ,上記課題に対する解答を試みた。実際,平成6年2月に文部省によって実施された「教育課程実施状況調査」によれば,6学年児を対象とする「分数÷分数」を立式させる問題の通過率は27.2%であり,一方5学年児を対象とする「小数÷小数」(以下「÷小数」)を立式させる問題の通過率は65.9%であった。両問題の数理構造は類似しているにもかかわらず,通過率に40%近くの差が生じるところに,接続を考察する上で,基本的な問題が内包されていると考えた。 本年度の研究実績の概要をまとめれば,次の3点に集約される。第1点は,上で述べたような「÷分数」に関する低い通過率の要因を一般化の視座から理論的に明らかにした点である。本研究では,「÷分数」と「÷小数」の通過率の差が立式に不可分なアルゴリズムの理解によるものであり,両者のアルゴリズムの理解が「外延的一般化」あるいは「内包的一般化」として質的に異なることを指摘した。第2点は「÷分数」指導の新たな目的を提起した点である。つまり,小学算数を中学数学に接続する教材という視座から,算数を統合し代数へと発展させる出発点として「÷分数」の教材を位置づけるべきことを指摘した。第3点としては,現行の比例的推論に基づく「÷分数」指導に代わって,新たな指導の対案を提案した点である。その対案とは,立式のためには「比較」のスキーマを前提とし,「×逆数」の説明には,既有の数学的知職を仮定する教授学的介入である。本研究では,この対案に基づく教授実験を設計,実施し,その妥当性,有効性を示すことができた。
|