• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

COINVARIANTS IN CONFORMAL FIELDTHEORY

Research Project

Project/Area Number 14340040
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionThe University of Tokyo

Principal Investigator

JIMBO Michio  The University of Tokyo, Graduate School of Mathematical Sciences, professor, 大学院・数理科学研究科, 教授 (80109082)

Co-Investigator(Kenkyū-buntansha) MIWA Tetsuji  Kyoto University, Graduate School of science, professor, 大学院・理学研究科, 教授 (10027386)
Project Period (FY) 2002 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥5,300,000 (Direct Cost: ¥5,300,000)
Fiscal Year 2003: ¥2,500,000 (Direct Cost: ¥2,500,000)
Fiscal Year 2002: ¥2,800,000 (Direct Cost: ¥2,800,000)
KeywordsConformal field theory / Coinvariants / Macdonald polynomials / form factors / Sine-Gordon model / quantum affine algebras / 量子群 / フュージョン積 / 指標 / マクドナルド多項式 / フェルミ型公式
Research Abstract

We investigated the conformal coinvariants and its application to integrable quantum field theory.
(i)The conformal coinvariants associated with integrable highest weight representations of affine Lie algebras have a natural filtration. We proved that they are isomorphic as filtered space to the space of coinvariants of the fusion products of finite dimensional modules in the sense of Feigin-Loktev. In some simple cases we also obtained explicit character formulas for the characters in terms of the restricted Kostka polynomials.
(ii)We studied a family of symmetric polynomials satisfying certain zero conditions on the (shifted) diagonals. We showed that the ideal spanned by them has a basis in terms of a family of Macdonald polynomials at specific values of parameters q, t (q^<r-1>t^<k+1>=1).
(iii)We studied the space of local fields in integrable quantum field theory, in the framework of the form factor bootstrap approach. Using their integral representations, each local, field is specified by an infinite series of polynomials which appear as integrand. In the case of the SU(2)-invariant Thirring model, we introduced an action of the quantum affine algebra U_√<-1>(<sl_2>^^^^) in the space of such sequences of polynomials, and proved that this space is isomorphic to the tensor product of the level 1 highest and level -1 lowest modules.

Report

(3 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • Research Products

    (19 results)

All Other

All Publications (19 results)

  • [Publications] B.Feigin et al.: "Spaces of coinvariants and fusion product I."Duke Math.J.. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] B.Feigin et al.: "Symmetric polynomials vanishing on the Shifted diagonals and Macdonald polynomials"Int.Math.Res.Notices. 18. 1015-1034 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] M.Jimbo et al.: "Counting minimal form factors of the restricted sine-Gordon on model"Moscow Math.J.. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] M.Jimbo et al.: "Form factors and action of U_<√<-1>>(<sl>^^^〜_2) on ∞-cycles"Commun.Math.Phys.. 245. 551-576 (2004)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] B.Feigin et al.: "A functional model for the tensor product of level 1 highest and level -1 lowest modules for the quantum affine algebra U_<√<-1>>(<sl>^^^〜_2)"European J.Comb.. (印刷中).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] B.Feigin, M.Jimbo, R.Kedem, S.Loktev, T.Miwa: "Spaces of coinvariants and fusion product I."Duke Math.. (in press).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] B.Feigin, M.Jimbo, T.Miwa, E.Mukhin: "Symmetric polynomials vanishing on the shifted diagonals and Macdonald polynomials"Int. Math. Res. Notice.. 18. 1015-1034 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] M.Jimbo, T.Miwa, Y.Takeyarna: "Counting minimal form factors of the restricted sine-Gordon model."Moscow Math. J.. (in press).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] M.Jimbo, T.Miwa, E.Mukhin, Y.Takeyama: "Form factors and action of U_√<-1>(<sl_2>^^^〜) on ∞-cycles"Commun. Math. Phys.. 245. 551-576 (2004)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] B.Feigin, M.Jimbo, M.Kashiwara, T.Miwa, E.Mukhin, Y.Takeyama: "A functional model for the tensor product of level 1 highest and level -1 lowest modules for the quantum affine algebra U_q(<sl_2>〜)"European J. Comb.. (in press).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] M.Jimbo: "Counting Minimal form factors of the restricted sine-Gordon model"Moscow Math.J.. (to appear).

    • Related Report
      2003 Annual Research Report
  • [Publications] M.Jimbo: "Form factors and action of U_<√<-1>>(<sl>^^^∧_2) on ∞-cycles"Commun.Math.Phys.. (to appear).

    • Related Report
      2003 Annual Research Report
  • [Publications] B.Feigin: "A functional model for the tensor product of level 1 highest and level -1 lowest modules for the quantum affine algebra U_q(<sl>^^^∧_2)"European J.Comb.. (to appear).

    • Related Report
      2003 Annual Research Report
  • [Publications] B.Feigin et al.: "Vertex operator algebra arising from the minimal series M(3,p) and monomial loasis"Math Phys, Odessey 2001,Okayama, Birkhauser. 179-204 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] B.Feigin et al.: "Bosonic formulas for (k,l)-admissible partitions"Ramanujan Jour.. (to appear).

    • Related Report
      2002 Annual Research Report
  • [Publications] B.Feigin et al.: "Bosonic formulas for <sl>^^^^_2 coinvariants"Ramanujan Jour.. (to appear).

    • Related Report
      2002 Annual Research Report
  • [Publications] B.Feigin et al.: "A differential ideal of symmetric polynomials spanned by Jack polynomials at β=-(γ-1)/(κ+1)"Int.Math.Res.Notice. 23. 1223-1237 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] B.Feigin et al.: "Symmetric polynomials vanishing on the shifted diagonals and Macdonald polynomials"Int.Math.Res.Notice. 18. 1015-1034 (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] B.Feigin et al.: "Symmetric polynomials vanishing on the diagonals shifted by roots of unity"Int.Math.Res.Notice. 18. 999-1014 (2003)

    • Related Report
      2002 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi