• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on the path models for extremal weight modules over a quantum affine algebra

Research Project

Project/Area Number 14540006
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionUniversity of Tsukuba

Principal Investigator

NAITO Satoshi  University of Tsukuba, Graduate School of Pure and Applied Sciences, Associate Professor, 大学院・数理物質科学研究科, 助教授 (60252160)

Co-Investigator(Kenkyū-buntansha) TAKEUCHI Mitsuhiro  University of Tsukuba, Graduate School of Pure and Applied Sciences, Professor, 大学院・数理物質科学研究科, 教授 (00015950)
MORITA Jun  University of Tsukuba, Graduate School of Pure and Applied Sciences, Professor, 大学院・数理物質科学研究科, 教授 (20166416)
MIYAMOTO Masahiko  University of Tsukuba, Graduate School of Pure and Applied Sciences, Professor, 大学院・数理物質科学研究科, 教授 (30125356)
SAGAKI Daisuke  University of Tsukuba, Graduate School of Pure and Applied Sciences, Research Associate, 大学院・数理物質科学研究科, 助手 (40344866)
SAITO Yoshihisa  The University of Tokyo, Graduate School of Mathematical Sciences, Associate Professor, 大学院・数理科学研究科, 助教授 (20294522)
Project Period (FY) 2002 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥4,000,000 (Direct Cost: ¥4,000,000)
Fiscal Year 2004: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2003: ¥1,400,000 (Direct Cost: ¥1,400,000)
Fiscal Year 2002: ¥1,700,000 (Direct Cost: ¥1,700,000)
Keywordscrystal base / quantum affine algebra / path model / extremal weight module / standard module / Lakshmibai-Seshadri path / level zero / fundamental representation
Research Abstract

M.Kashiwara introduced the notion of an extremal weight module $V(lambda)$ with an integral weight $lambda$ as an extremal weight over the quantum group $U_q(g)$ associated to a (general) Kac-Moody algebra $g$, by generalizing the notion of an integrable highest weight module. When $g$ is an affine Lie algebra and an integral weight $lambda$ is of level zero, we obtain certain finite-dimensional representations of a quantum affine algebra as quotient modules of the extremal weight module $V(lambda)$. For example, we obtain standard modules $M(lambda)$ introduced by H.Nakajima by an algebro-geometric method, which have turned out to coincide with quantum Weyl modules $M(lambda)$ introduced by V.Chari and A.Pressley. In our series of works from 2002 to 2004, for an integral weight $lambda$ of level zero that is a sum of level-zero fundamental weights for the affine Lie algebra $g$, we studied a certain crystal $B(lambda)_{cl}$, which is (modulo the null root of $g$) the crystal of all Lakshmibai-Seshadri paths of shape $lambda$. As a result, we proved that this crystal $B(lambda)_{cl}$ is isomorphic as a crystal to a tensor product of the path models for level-zero fundamental representations of the quantum affine algebra. From this result, we see that the crystal $B(lambda)_{cl}$ can be thought of as a path model for the standard module $M(lambda)$. Moreover, using our results above, we can describe the branching rule of the standard module $M(lambda)$ over the quantum affine algebra with respect to the restriction to the quantum group $U_q(g_0)$ associated to a (canonical) finite-dimensional reductive Lie subalgebra $g_0$ of $g$ in a combinatorial way, by using elements of the Weyl group $W$ of $g$ and the Bruhat order on $W$.

Report

(4 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • 2002 Annual Research Report
  • Research Products

    (23 results)

All 2004 2003 2002 Other

All Journal Article (15 results) Publications (8 results)

  • [Journal Article] A rationalization of the crystal $Z^{infty}$ and a diagram automorphism2004

    • Author(s)
      S.Naito, D.Sagaki
    • Journal Title

      J.Pure Appl.Algebra 189・1-3

      Pages: 279-295

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Crystal bases and diagram automorphisms2004

    • Author(s)
      S.Naito, D.Sagaki
    • Journal Title

      Adv.Stud.Pure Math. 40

      Pages: 321-341

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Path model for a level-zero extremal weight module over a quantum affine algebra2003

    • Author(s)
      S.Naito, D.Sagaki
    • Journal Title

      Int.Math.Res.Not. 2003・32

      Pages: 1731-1754

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Three kinds of extremal weight vectors fixed by a diagram automorphism2003

    • Author(s)
      S.Naito, D.Sagaki
    • Journal Title

      J.Algebra 268・1

      Pages: 343-365

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Standard paths and standard monomials fixed by a diagram automorphism2002

    • Author(s)
      S.Naito, D.Sagaki
    • Journal Title

      J.Algebra 251・1

      Pages: 461-474

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Path model for a level-zero extremal weight module over a quantum affine algebra II

    • Author(s)
      S.Naito, D.Sagaki
    • Journal Title

      Adv.Math. (in press)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Crystal of Lakshmibai-Seshadri paths associated to an integral weight of level zero for an affine Lie algebra

    • Author(s)
      S.Naito, D.Sagaki
    • Journal Title

      Int.Math.Res.Not. (in press)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Crystal base elements of an extremal weight module fixed by a diagram automorphism

    • Author(s)
      S.Naito, D.Sagaki
    • Journal Title

      Algebra.Represent.Theory (in press)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Path model for a level-zero extremal weight module over a quantum affine algebra II

    • Author(s)
      S.Naito, D.Sagaki
    • Journal Title

      Adv.Math. (in press)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Crystal of Lakshmibai-Seshadri paths associated to an integral weight of level zero for an affine Lie algebra

    • Author(s)
      S.Naito, D.Sagaki
    • Journal Title

      Int.Math.Res.Not. (in press)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Crystal base elements of an extremal weight module fixed by a diagram automorphism

    • Author(s)
      S.Naito, D.Sagaki
    • Journal Title

      Algebr.Represent.Theory (in press)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Path model for a level-zero extremal weight module over a quantum affine algebra II

    • Author(s)
      S.Naito, D.Sagaki
    • Journal Title

      Adv.Math. (in press)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Crystal of Lakshmibai-Seshadri paths associated to an integral weight of level zero for an affine Lie algebra

    • Author(s)
      S.Naito, D.Sagaki
    • Journal Title

      Int.Math.Res.Not. (in press)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] An approach to the branching rule from $sl_{2n}(C)$ to $sp_{2n}(C)$ via Littelmann' s path model

    • Author(s)
      S.Naito, D.Sagaki
    • Journal Title

      J.Algebra (in press)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Crystal base elements of an extremal weight module fixed by a diagram automorphism

    • Author(s)
      S.Naito, D.Sagaki
    • Journal Title

      Algebra.Represent.Theory (to appear)

    • Related Report
      2004 Annual Research Report
  • [Publications] S.Naito: "Twining characters and Kostant's homology formula"Tohoku Math.J.. 55-2. 157-173 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] S.Naito, D.Sagaki: "Path model for a level-zero extremal weight module over a quantum affine algebra"Int.Math.Res.Not.. 2003-32. 1731-1754 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] S.Naito, D.Sagaki: "Three kinds of extremal weight vectors fixed by a diagram automorphism"J.Algebra. 268-1. 343-365 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] S.Naito, D.Sagaki: "Crystal bases and diagram automorphisms"Adv.Stud.Pure Math.. (in press).

    • Related Report
      2003 Annual Research Report
  • [Publications] S.Naito, D.Sagaki: "A rationalization of the crystal Z^∞ and a diagram automorphism"J.Pure Appl.Algebra. (in press).

    • Related Report
      2003 Annual Research Report
  • [Publications] S.Naito, D.Sagaki: "Crystal base elements of an extremal weight module fixed by a diagram automorphism"Algebr.Represent.Theory. (to appear).

    • Related Report
      2003 Annual Research Report
  • [Publications] S.Naito, D.Sagaki: "Three kinds of extremal weight vectors fixed by a diagram automorphism"J. Algebra. (to appear).

    • Related Report
      2002 Annual Research Report
  • [Publications] S.Naito, D.Sagaki: "Crystal bases and diagram automorphisms"Adv. Stud. Pure Math.. (to appear).

    • Related Report
      2002 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi