• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on the arithmetic discontinuous groups

Research Project

Project/Area Number 14540008
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionSaitama University

Principal Investigator

TAKEUCHI Kisao  Saitama University, Dept.of Math., Professor, 理学部, 教授 (00011560)

Co-Investigator(Kenkyū-buntansha) SATO Takakazu  Saitama University, Dept.of Math., Associate Professor, 理学部, 助教授 (70215797)
SAKAI Fumio  Saitama Univ., Dept.of Math., Professor, 理学部, 教授 (40036596)
EBIHARA Madoka  Saitama Univ., Dept.of Math., Lecturer, 理学部, 講師 (80213578)
ARAI Michio  Saitama Univ., Dept.of Math., Assistant, 理学部, 助手 (40008850)
YANO Tamaki  Saitama Univ., Dept.of Math., Professor, 理学部, 教授 (10111410)
Project Period (FY) 2002 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥3,400,000 (Direct Cost: ¥3,400,000)
Fiscal Year 2004: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2003: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2002: ¥1,200,000 (Direct Cost: ¥1,200,000)
KeywordsNumber theory / Discontinuous group / Algebraic number field / Discriminant
Research Abstract

One of the aims of this project is to determine all arithmetic Fuchsian groups Γ with signature (O;e_1,e_2,e_3,e_4) explicitely.
(1)Let K be a totally real algbraic number field K of dgree n. Let A be a quaternion algebra over K such that A【cross product】_Q R〓M_2(R) 【symmetry】H^<n-1>, where H is the Hamilton quaternion algebra. Let O is an order of A. Let Γ^1(A,O) be a Fuchsian group derived from unit group O^1 of O of norm 1. If a Fuchsian group Γ is commensurable with Γ^1 (A,O), Γ is called K-arithmetic Fuchsian group. If there exists a K-arithmetic Fuchsian group Γ with signature (O;e_1,e_2,e_3,e_4), then the degree [K:Q]【less than or equal】10. Moreover, the explicit upper bound D_0 of the discriminant d(K) of such fields K is given. We have determined the imprimitive field K of degree 10 with minimum discriminant d(K). (c.f.K.Takeuchi [1])
(2)We have studied the case K=Q. Let A be a quaternion algebra over Q and let O(f) be an Eichler order in A with square-free level f. Let Γ^*(A,O(f)) be the normalizer ofΓ^1(A,O(f)) in SL_2(R). We show that if Γ is a Q-arithmetic Fuchsian group. Then Γ is a subgroup of Γ^*(A,O) of finite index, (c.f.K.Takeuchi [2])
Consequently, we can deternime all Q-arithmetic Fuchsian groups Γ with signature (O;e_1,e_2,e_3,e_4) explicitly.

Report

(4 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • 2002 Annual Research Report
  • Research Products

    (16 results)

All 2005 2004 2003 Other

All Journal Article (13 results) Publications (3 results)

  • [Journal Article] Rational plane curves of type (d,d-2)2005

    • Author(s)
      F.Sakai, M.Saleem
    • Journal Title

      Saitama Math.J.

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Rational plane curves of type(d,d-2)2004

    • Author(s)
      F.SAKAI, M.SALEEM
    • Journal Title

      Saitama Math.J. 22

      Pages: 11-34

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The gonality of singular curves2004

    • Author(s)
      M.OHKOUCHI, F.SAKAI
    • Journal Title

      Tokyo J.Math. 27

      Pages: 137-147

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Rational plane curves of type (d,d-2)2004

    • Author(s)
      F.Sakai, M.Saleem
    • Journal Title

      Saitama Math.J. 22

      Pages: 11-34

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The gonality of singular curves2004

    • Author(s)
      M.Ohkouchi, F.Fakai
    • Journal Title

      Tokyo J.Math. 27

      Pages: 137-147

    • Related Report
      2004 Annual Research Report
  • [Journal Article] The gonality of singular curves2003

    • Author(s)
      M.OHKOUCHI, F.SAKAI
    • Journal Title

      Proc.Korea-Japan Joint Workshop in Math.

      Pages: 107-116

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Conic Bundleの変形について2003

    • Author(s)
      海老原 円
    • Journal Title

      2002年度代数幾何学シンポジウム報告集

      Pages: 18-27

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The gonality of singular curves2003

    • Author(s)
      M.Ohkouchi, F.Sakai
    • Journal Title

      Tokyo Math.J. 27

      Pages: 207-254

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The gonality of singular plane curves2003

    • Author(s)
      M.Ohkouchi, F.Sakai
    • Journal Title

      Proc.Korea-Japan Joint Workshop in Math.

      Pages: 107-116

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Imprimitive totally real algebraic number fields of degree 10 with minimum discriminant

    • Author(s)
      K.TAKEUCHI
    • Journal Title

      preprint

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Arithmetic Fuchsian groups

    • Author(s)
      K.TAKEUCHI
    • Journal Title

      preprint

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Imprimitive totally real algebraic number field of degree 10 with minimum discriminant

    • Author(s)
      K.Takeuchi
    • Journal Title

      (preprint)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Arithmetic Fuchsian groups

    • Author(s)
      K.Takeuchi
    • Journal Title

      (preprint)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Publications] T.Satoh, B.Skjernaa, Y.Taguchi: "Fast Computation of canonical lifts of elliptic curves and its application to point counting"Finite Fields and Their Application. 9. 89-101 (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] M.Ohkouchi, F.Sakai: "The gonality of singular plane curves"Proc. of Korea-Japan Workshop. (to appear). (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] 海老原 円: "Conic bundleの変形について"研究集会「代数幾何学」報告集. (to appear). (2003)

    • Related Report
      2002 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi