• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of Derived Categories and Chain complexes

Research Project

Project/Area Number 14540011
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTOKYO GAKUGEI UNIVERSITY

Principal Investigator

MIYAUCHI Jun-ichi  Tokyo Gakugei University, Department of Mathematics, Associate, 教育学部, 助教授 (50209920)

Co-Investigator(Kenkyū-buntansha) TOKUHIRO Yoshimi (KITAMURA Yoshimi)  Tokyo Gakugei University, Department of Mathematics, Professor, 教育学部, 教授 (00014811)
KURANO Kazuhiko  Meiji University, Department of Mathematics, Professor, 理工学部, 教授 (90205188)
Project Period (FY) 2002 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥2,800,000 (Direct Cost: ¥2,800,000)
Fiscal Year 2003: ¥1,200,000 (Direct Cost: ¥1,200,000)
Fiscal Year 2002: ¥1,600,000 (Direct Cost: ¥1,600,000)
KeywordsDerived category / Chain complex / Tilting complex / Recollement / Symmetric algebra / Grothendieck group / Grassmanian / Quasi-Frobenius extension / 因子類群 / 斉次座標環 / 自己入射的多元環 / 準フロベニウス環拡大 / socle / tilting複体 / ネーター局所環 / Frobenius多元環
Research Abstract

For an idempotent e of an algebra A, we study the structure of a recollement {D_<A/AeA>(A), D(A), D(eAe)} and the distinguished triangle ξ(e) which induduce the recollement. We give equivalent conditions that a tilting complex induces an equivalence between recollements {D_<A/AeA>(A), D(A), D(eAe)} and{D_<B/BfB>(B),D(fBf)}.We call this tilting complex a recollement tilting complex. We study constructions of tilting complexes for a symmetric algebra A over a field. First, we construct a family of recollement tilting complexes {T_n}_<n≧0> which induce an equivalence between recollements {D_<A/AeA>(A), D(A), D(eAe)} and{D_<B/BfB>(B),D(fBf)} from a partial tilting complex. As applications, we show that a partial tilting complex P of length 2 is a tilting complex if and only if the number of indecomposable types of P is equal to the number of generators of the Grothendieck group of A. This is a complex version over symmetric algebras of Bongartz's result on classical tilting modules. The recollement tilting complex which is constructed in the above induces an Morita equivalence between A/AeA and B/BfB. Moreover, We have the following related results : We study when the induced map between Grothendieck groups of finitely generated modules of a noetherian local ring and its completion is injective. We determine when the affine cone of the Grassmanian variety is a Roberts ring. We generalize the relation between divisor class groups of normal projective variety and its total coordinate ring. Let A/B be a quasi-Frobenius extension. In the case that B is non-singular, if A is self-injective, then so is B. If B is self-injective and has a right ideal of which socle is non-zero, then A sarisfies the same condition.

Report

(3 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • Research Products

    (18 results)

All Other

All Publications (18 results)

  • [Publications] Jun-ichi Miyachi: "Recollement and tilting complexes"J.Pure Appl.Algebra. 183. 245-273 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Yoshimi Kitamura: "A note on quasi-Frobenius extensions"Arch.Math. 78. 8-11 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Yoshimi Kitamura: "Injective ideals for quasi-Frobenius extensions"Bull.Tokyo Gakugei Univ.. 55. 1-4 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Kazuhiko Kurano: "On maps of Grothendieck groups induced by completion"Joural of Algebra. 254. 21-43 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Kazuhiko Kurano: "Todd classes of affine cones of Grassmannians"Int.Math.Res.Notices. 35. 1841-185 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Kazuhiko Kurano: "The total coordinate ring of a normal projective variety"J.Algebra. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Jun-ichi Miyachi: "Recollement and tilling complexes"J. Appl. Algebra. 183. 245-273 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Yoshimi Kitamura: "A note on quasi-Frobenius extensions"Arch. Math.. 78. 8-11 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Yoshini Kitamura: "Injective ideals for quasi-Frobenius extensions"Bull. Tokyo Gakugei Univ.. 55. 1-4 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Kazuhiko Kurano: "On maps of Grothendieck groups induced by completion"Joural of Algebra. 254. 21-43 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Kazuhiko Kurano: "Todd classes of affine cones of Grassmannians"Int. Math. Res. Notices. 35. 1841-1855 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Kazuhiko Kurano: "The total coordinate ring of a normal projective variety"J.Algebra. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Kazuhiko Kurano: "The total coordinate ring of a normal projective variety"J.Algebra. (to appear).

    • Related Report
      2003 Annual Research Report
  • [Publications] Yoshimi Kitamura: "Injective ideals for quasi-Frobenius extensions"Bull.Tokyo Gakugei Univ.. 55. 1-4 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Jun-ichi Miyachi: "Recollement and tilting complexes"To appear in Journal of Pure and Applied algebra. (印刷中).

    • Related Report
      2002 Annual Research Report
  • [Publications] Kazuhiko Kurano: "On maps of Grothendieck groups induced by completion"Journal of Algebra. 254. 21-43 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Kazuhiko Kurano: "Todd classes of affine cones of Grassmannians"Int.Math.Res.Notices. 35. 1841-1855 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Yoshimi Kitamura: "A note on quasi-Frobenius extensions"Arch.Math.. 78. 8-11 (2002)

    • Related Report
      2002 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2021-12-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi