• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A Study on Jacobi Forms by a Method of Algebraic Geometry

Research Project

Project/Area Number 14540047
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionMEIJI UNIVERSITY

Principal Investigator

TSUSHIMA Ryuji  Meiji Univ., School of Science and Technology, Prof., 理工学部, 教授 (20118764)

Co-Investigator(Kenkyū-buntansha) GOTO Shiro  Meiji Univ., School of Science and Technology, Prof., 理工学部, 教授 (50060091)
NAKAMURA Yukio  Meiji Univ., School of Science and Technology, Assoc.Prof., 理工学部, 助教授 (00308066)
稲富 彬  明治大学, 理工学部, 教授 (20061872)
Project Period (FY) 2002 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2004: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2003: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2002: ¥1,400,000 (Direct Cost: ¥1,400,000)
KeywordsAlgebraic Geometry / Automorhic Function / Siegel Modular Form / Jacobi Form / Satake Compactification / リーマン・ロッホの公式 / 小平・中野の消滅定理
Research Abstract

We computed the dimension of the spaces of skew-holomorphic Jacobi forms of weight k and degree two. This is an extension of the former result in which we computed the dimension of the spaces of holomorphic Jacobi forms of degree two. Moreover we computed the formula of Riemann-Roch which is needed to compute the dimension of the spaces of skew-holomorphic Jacobi forms also in the vector valued case. This is not a dimension formula yet, since we have not proved the vanishing theorem. But this is needed to compute the dimension formula and sufficient to estimate the dimension formula.
If we apply the result of T. Ibukiyama to our result, we obtain the dimension formula for the subspaces called plus spaces in the spaces of Siegel modular forms of half integral weight (this is a conjecture in the vector valued case). The spaces of Siegel modular forms of half integral weight were explicitly determined by the former work of the dimension formula for these spaces. The plus spaces were also e … More xplicitly determined (due to a computer calculation by S. Hayashida). The lifting theory of Siegel modular forms of Saito-Kurokawa is constructed by an isomorphism of the plus space and the space of Jacobi forms of upper degree. By this result the lifting theory from degree two to degree three is completed.
In the 1970's G.Shimura found a correspondence from modular forms of integral weight to modular forms of half integral weight in the case of degree one which is called Shimura correspondence today. It is a natural idea to try an extension this correspondence to the case of higher degree. But the clue have not been found after 30 years. Since the Shimura correspondence is not a surjection to the space of modular forms of half integral weight, it is important to know the dimension of the plus space which is expected to be the image of the correspondence. Moreover it is absolutely important to study the general case of vector valued modular forms because the Shimura correspondence of higher degree is a correspondence between vector valued modular forms. If we compare the dimension of the space of Siegel modular forms of degree two and integral weight and the dimension of the space of Jacobi forms assuming the vanishing theorem, we can determine the dimension of the plus pace which is expected to be isomorphic to the space of Siegel modular forms of integral weight. And it is known that the dimensions of these spaces are equal to each other (due to T.Ibukiyama). From this the existence of the Shimura correspondence in the case of degree two is conjectured. Less

Report

(4 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • 2002 Annual Research Report
  • Research Products

    (26 results)

All 2004 2003 2002 Other

All Journal Article (22 results) Publications (4 results)

  • [Journal Article] Parametric decomposition of powers of ideals versus regularity of sequences2004

    • Author(s)
      後藤 四郎, 下田 保博
    • Journal Title

      Proc.Amer.Math.Soc. 132(4)

      Pages: 929-933

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On the parametric decomposition of powers of parameter ideals2004

    • Author(s)
      後藤 四郎, 下田 保博
    • Journal Title

      Tokyo J.Math. 27(1)

      Pages: 125-135

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The reduction exponent of socle ideals associated to parameter ideals in a Buchsbaum local ring of multiplicity two2004

    • Author(s)
      後藤 四郎, 櫻井 秀人
    • Journal Title

      J.Math.Soc.Japan 56(4)

      Pages: 1157-1168

    • NAID

      10013753523

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Parametric decomposition of powers of ideals versus regularity of sequences2004

    • Author(s)
      Shiro Goto, Y.Shimoda
    • Journal Title

      Proc.Amer.Math.Soc. 132, no.4

      Pages: 929-933

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On the parametric decomposition of powers of parameter ideals2004

    • Author(s)
      Shiro Goto, Y.Shimoda
    • Journal Title

      Tokyo J.Math. 27, no.1

      Pages: 125-135

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The reduction exponent of socle ideals associated to parameter ideals in a Buchsbaum local ring of multiplicity two2004

    • Author(s)
      Shiro Goto, H.Sakurai
    • Journal Title

      J.Math.Soc.Japan 56, no.4

      Pages: 1157-1168

    • NAID

      10013753523

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The reduction exponent of socle ideas associated to parameter ideals in a Buchsbaum local ring of multiplicity two2004

    • Author(s)
      後藤四郎
    • Journal Title

      J. Math Soc. Japan 56

      Pages: 1157-1168

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Dimension Formula for the Spaces of Siegel Cusp Forms of Half Integral Weight and Degree Two2003

    • Author(s)
      対馬 龍司
    • Journal Title

      Comment.Math.Univ.St.Pauli 52(1)

      Pages: 69-115

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The a-invariant and Gorensteinness of graded rings associated to filtrations of ideals in regular local rings2003

    • Author(s)
      後藤 四郎, 早坂 太, 居相 真一郎
    • Journal Title

      Proc.Amer.Math.Soc. 131(1)

      Pages: 87-96

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Hilbert coefficients and Buchsbaumness of associated graded rings2003

    • Author(s)
      後藤 四郎, 西田 憲司
    • Journal Title

      J.Pure and Appl.Algebra 181(1)

      Pages: 61-74

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Towards a theory of Gorenstein m-primary integrally closed ideals2003

    • Author(s)
      後藤 四郎, 早坂 太, 春日 理枝
    • Journal Title

      Commutative algebra, singularities and computer algebra, NATO Sci.Ser.II 115

      Pages: 159-177

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The equality I^2=QI in Buchsbaum rings2003

    • Author(s)
      後藤 四郎, 櫻井 秀人
    • Journal Title

      Rend.Sem.Mat.Univ.Padova 110

      Pages: 25-56

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Dimension formula for the spaces of Siegel cusp forms of half integral weight and degree two.2003

    • Author(s)
      Ryuji Tsushima
    • Journal Title

      Comment.Math.Univ.St.Pauli 52 no.1

      Pages: 69-115

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The a-invariant and Gorensteinness of graded rings associated to filtrations of ideals in regular local rings2003

    • Author(s)
      Shiro Goto, F.Hayasaka, S.Iai
    • Journal Title

      Proc.Amer.Math.Soc. 131 no.1

      Pages: 87-94

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Hilbert coefficients and Buchsbaumness of associated graded rings2003

    • Author(s)
      Shiro Goto, K.Nishida
    • Journal Title

      J.Pure and Appl.Algebra 181 no.1

      Pages: 61-74

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] 「研究成果報告書概要(欧文)」より2003

    • Author(s)
      Shiro Goto
    • Journal Title

      NATO Sci.Ser.II Math.Phys.Chem.(Kluwer Acad.Publ., Dordrecht) 115

    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The equality I^2=QI in Buchsbaum rings2003

    • Author(s)
      Shiro Goto, H.Sakurai
    • Journal Title

      Rend.Sem.Mat.Univ.Padova 110

      Pages: 25-56

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Dimension formula for the spaces of Siegel cusp forms of half integral weight and degree two2003

    • Author(s)
      対馬龍司
    • Journal Title

      Comment. Math. Univ. St. Pauli 52・1

      Pages: 69-115

    • Related Report
      2004 Annual Research Report
  • [Journal Article] The bound of the difference between parameter ideals and their tight closures2002

    • Author(s)
      後藤 四郎, 中村幸男
    • Journal Title

      Tokyo J.Math. 25(1)

      Pages: 41-48

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Towards a theory of Gorenstein m-primary integrally closed ideals2002

    • Author(s)
      Shiro Goto, F.Hayasaka, S.Kasuga
    • Journal Title

      Commutative algebra, singularities and computer algebra (Sinaia, 2002)

      Pages: 159-177

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The bound of the difference between parameter ideals and their tight closures2002

    • Author(s)
      Yukio Nakamura, S.Goto
    • Journal Title

      Tokyo J.Math. 25, no.1

      Pages: 41-48

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Dimension formula for the spaces of Jacobi forms of degree two.

    • Author(s)
      Ryuji Tsushima
    • Journal Title

      (preprint)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Publications] 対馬 龍司: "Dimension formula for the spaces of Siegel cusp forms of halt integral weight and degree two"Comment.Math.Univ.St.Pauli. 52・1. 69-115 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Ryuji Tsushima: "On the dimension formula for the spaces of Siegel cusp forms of half integral weight and degree two"数理解析研究所講究録. 1052. 42-57 (1998)

    • Related Report
      2002 Annual Research Report
  • [Publications] Ryuji Tsushima: "On the dimension formula for the spaces of Jacobi forms of degree two"数理解析研究所講究録. 1103. 96-110 (1999)

    • Related Report
      2002 Annual Research Report
  • [Publications] Ryuji Tsushima: "Dimension formula for the spaces of Siegel cusp forms of half integral weight and degree two"Comm. Math. Univ. St. Pauli. (受理済). (2003)

    • Related Report
      2002 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi