• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Markov spectrum in various Diophantine approximation problems

Research Project

Project/Area Number 14540052
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionSuzuka National College of Technology

Principal Investigator

YASUTOMI Shin-ichi  Suzuka National College of Technology, General Education, Professor, 一般科目, 教授 (60230231)

Project Period (FY) 2002 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥1,500,000 (Direct Cost: ¥1,500,000)
Fiscal Year 2005: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 2004: ¥200,000 (Direct Cost: ¥200,000)
Fiscal Year 2003: ¥200,000 (Direct Cost: ¥200,000)
Fiscal Year 2002: ¥500,000 (Direct Cost: ¥500,000)
KeywordsDiophantine approximation / Markov spectrum / simultaneous approximation / Jacobi-Perron Algorithm / ヤコービ・ペロンアルゴリズム / 非斉次近似 / マルコフスペクトラム / ヤコーペロンアルゴリズム
Research Abstract

Let α,β be real cubic numbers andβ∈Q(α) and (α,β) be periodic point related to modified Jacobi-Perron Algorithm with the period k. We suppose that Q(α) is not totally real field. Jointing work with Ito Shunji(Kanazwa Univ) and Furukado Maki(Yokohama National Univ) we establish that the intermediate convergents associated with modified Jacobi-Perron Algorithm give the best rational approximation to (α,β).
Our main Theorem is as follows :
Main Theorem. Let (α,β) be periodic point related to modified Jacobi-Perron Algorithm with the period k and Q(α) be not totally real cubic field. The convergents associated with modified Jacobi-Perron Algorithm did not always give the best rational approximation. But, there exists sequnces of integers a_1,a_2,...,a_j and m_1,m_2,...,m_j such that {a_1q_<kn+m_1>+a_2q_<kn+m_2>+...+a_jq_<kn+m_1>} give the best rational approximation, that is, we denote Q_n=a_1q_<kn+m_1>+a_2q_<kn+m_2>+...+a_jq_<kn+m_j>. P_n and R_n are denoted by the nearest integer to Q_nα and Q_nβ respectively. Then, the limit set of √<Q_n>(Q_nα-P_n,Q_nβ-R_n) as n→∞ is the nearest ellipse to the origin.
We introduce new algorithm for inhomogeneous Diophantine approximation and we obtain some good properties of this algorithm.

Report

(5 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • 2003 Annual Research Report
  • 2002 Annual Research Report
  • Research Products

    (6 results)

All 2005 2003 Other

All Journal Article (5 results) Publications (1 results)

  • [Journal Article] On a new algorithm for inhomogeneous Diophantine approximation2005

    • Author(s)
      Yasutomi, Shin-ichi
    • Journal Title

      TSUKUBA JOURNAL OF MATHEMATICS 29,no.1

      Pages: 173-195

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] On a new algorithm for inhomogeneous Diophantine approximation2005

    • Author(s)
      Yasutomi Shin-ichi
    • Journal Title

      Tsukuba Journal of Mathematics vol.29, no.1

      Pages: 173-195

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] On a new algorithm for inhomogeneous Diophantine approximation2005

    • Author(s)
      Yasutomi, Shin-ichi
    • Journal Title

      TSUKUBA JOURNAL OF MATHEMATICS 29,No.1

    • Related Report
      2004 Annual Research Report
  • [Journal Article] On simultaneous approximation to (a,a^2) with α^3+kα-1=02003

    • Author(s)
      Ito, Shunji, Fujii, Junko, Higashino, Hiroko, Yasutomi, Shin-ichi
    • Journal Title

      Journal of Number Theory 99,no.2

      Pages: 255-283

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] On simultaneous approximation to (α,α^2) with α^3+kα-1=02003

    • Author(s)
      Ito Shunji, Fujii Junko, Higashino, Hiroko, Yasutomi, Shin-ichi
    • Journal Title

      Journal of Number Theory voi.99, no.2

      Pages: 255-283

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Publications] S.Ito, J.Fujii, H, Hisashino, S.Yasutomi: "On simultaneous approximation to (a, a^2) with a^3+ka-1=0"J.Number Theory. 99.2. 255-283 (2003)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi