• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Lie theoretic construction of simply elliptic singularities and associated primitive forms

Research Project

Project/Area Number 14540054
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionKitami Institute of Technology

Principal Investigator

YAMADA Hiroshi  Kitami Institute of Technology, Faculty of engineering, Professor, 工学部, 教授 (50210472)

Co-Investigator(Kenkyū-buntansha) SUZUKI Norio  Kitami Institute of Technology, Faculty of engineering, associate Professor, 工学部, 助教授 (80211986)
WATANABE Fumihiko  Kitami Institute of Technology, Faculty of engineering, associate Professor, 工学部, 助教授 (20274433)
IOHARA Kenji  Kobe University, Faculty of Science, assistant, 理学部, 助手 (00322199)
Project Period (FY) 2002 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2003: ¥1,400,000 (Direct Cost: ¥1,400,000)
Fiscal Year 2002: ¥2,100,000 (Direct Cost: ¥2,100,000)
Keywordselliptic curve / double loop Lie algebra / unstable vector bundle / simply elliptic singularity / super Virasoro algebra / Verma module / Fock module / hypergeometric fuction / 楕円型Lie環 / 楕円型Weyl群 / Atiyah-Bott point / Painleve方程式 / 単純楕円型特異点 / 単純特異点 / パンルベ方程式 / 初期値空間 / ワイル群 / アファインリー環 / フローケ理論 / 単純リー群
Research Abstract

There is well known correspondence of isomorphism classes of holomorphic vector bundles over elliptic curves and orbit spaces of double loop algebras with respect to adjoint actions of double loop groups. Using this correspondence and an action of double loop groups on the C^*-bundle on double loop Lie algebras, Yamada have characterized unstable holomorphic vector bundles over elliptic curves. From this results, we will construct simply elliptic singularities in terms of Lie algebras. But this results are obtained under a assumption of existence of double loop group invariant holomorphic functions on C^*-bundle over double loop Lie algebras. So we should prove the existence of them.
Watanabe has calculated the degeneration of connection formulas for Gauss hypergeometric functions.
Iohara and Koga have studied the structure of Verma modules of N=1 super Virasoro algebras. As applications, they construct Bernstein-Gel'fand-Gel'fand type resolutions. Moreover, they have analyzed the structure of the Fock modules over the N=1 super Virasoro algebras. As an application, they constructed the Bechi-Rouet-Stora-tyutin type resolutions.

Report

(3 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • Research Products

    (4 results)

All 2003

All Journal Article (4 results)

  • [Journal Article] Representation theory of Neveu-Schwarz and Ramond algebras I2003

    • Author(s)
      K.Iohara, Y.Koga
    • Journal Title

      Advance in Mathematics 178

      Pages: 1-65

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Journal Article] Representation theory of Neveu-Schwarz and Ramond algebras II2003

    • Author(s)
      K.Iohara, Y.Koga
    • Journal Title

      Ann.Ins.Fourier, Grenoble 52

      Pages: 1755-1818

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Journal Article] Representation theory of Neveu-Schwarz and Ramond algebras I2003

    • Author(s)
      K.Iohara, Y.Koga
    • Journal Title

      Advances in Mathematics 178

      Pages: 1-65

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Journal Article] representation theory of Neveu-Schearz and Ramond algebras II2003

    • Author(s)
      K.Iohara, Y.Koga
    • Journal Title

      Ann.Inst.Fourier 53

      Pages: 1755-1818

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi