• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on cohomological dimension of topological spaces and one of Coxeter groups

Research Project

Project/Area Number 14540077
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOsaka Kyoiku University

Principal Investigator

KOYAMA Akira  Osaka Kyoiku Univ., Fac.of Education, Professor, 教育学部, 教授 (40116158)

Co-Investigator(Kenkyū-buntansha) WATANABE Tadashi  Yamaguchi Univ., Fac.of Education, Professor, 教育学部, 教授 (10107724)
MACHIGASHIRA Yoshiro  Osaka Kyoiku Univ., Fac.of Education, Associate Professor, 教育学部, 助教授 (00253584)
SUGAHARA Kunio  Osaka Kyoiku Univ., Fac.of Education, Professor, 教育学部, 教授 (20093255)
YOKOI Katsuya  Shimane Univ., Fac.of Sci., Associate Professor, 総合理工学部, 助教授 (90240184)
YAGASAKI Tatsuhiko  Kyoto Inst.Tech., Fac.of Tech., Associate Professor, 工芸学部, 助教授 (40191077)
吉荒 聡  大阪教育大学, 教育学部, 教授 (10230674)
Project Period (FY) 2002 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2003: ¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 2002: ¥1,900,000 (Direct Cost: ¥1,900,000)
Keywordstopological spaces / dimension / cohomological dimension / Coxeter groups / ideal boundary / コホモロジ一次元 / CAT(O)空間
Research Abstract

We introduced a new cohomological dimension to the class of separable metric spaces by an inductive way as large inductive dimension. By nd_GX we denote our strong cohomological dimension of a separable metric space X with respect to an abelian group G. The following inequalities are clearly hold : "Ind_GX 【less than or equal】 dim_GX 【less than or equal】 Ind_GX + 1," here dim_G means the usual cohomological dimension with resprect to G. Relate to the fundamental properties we showed the following.
(1) If a separable metric space X is an ANR, Ind_GX = dim_G X for every abelian group G,
(2) If a separable metric space X is finite-dimensional and an abelian group G is countable, Ind_GX = dim_G X,
(3) For every infinite-dimensional compact metric space X with dim_Z X = 2, Ind_ZX = 3,
(4) For a given prime number p, there exists a compact metric space X such that dim_Z_<(p)> X = 2 < 3 = Ind_Z_<(p)> X,
(5) For every separable metric space X and every abelian group G, Ind_G(X × I) = dim_G X + 1,
(6) For every separable metric space X, Ind_QX = dim_Q X, here Q is the ring of all rational sumbers.

Report

(3 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • Research Products

    (27 results)

All Other

All Publications (27 results)

  • [Publications] Koyama, Akira, Moran, Manulo: "On classes of maps which preserve finitisticness"Proc.Amer.Math.Soc.. 130(10). 3091-3096 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Boege, M., Dydak, J.R.Jimenez, Koyama, A., Shchepin, E.: "Borsuk-Sieklucki theorem in cohomological dimension"Fund.Math.. 171(3). 213-222 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Koyama, Akira, Yokoi, Katsuya: "Cohomological dimension and acyclic resolution"Topology and its Applications. 120(1-2). 175-204 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Itokawa, Y, Machigashira, Y, Shiohama, K: "Generalized Toponogov's theorem for manifolds with radial curvature bouded below"Contemp.Math.. 332. 121-130 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Miyata, Takahisa, Watanabe, Tadashi: "Approximate resolutions and box-counting dimension"Topology and its Applications. 132(1). 49-69 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Koyama, Akira, Moron, Manuel M.: "On classes of maps which preserve finitisticness"Proc.Amer.Math.Soc.. 130(10). 3091-3096 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Koyama, Akira, M.Boege, M., Dydak, J., Ji-menez, R., Shchepin, E.Borsuk-Siekiucki: "theorem in cohomological dimension"Fund.Math.. 171(3). 213-222 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Koyama, Akira, Yokoi, Katsuya: "Cohomological dimension and acyclic resolutions"Topology and its Appl.. 120(1-2). 175-204 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Machigashira, Yoshiro, Itokawa, Yoe, Shiohama, Katsuhiro: "Generalized Toponogov's theorem for manifolds with radial curvature bounded below"ContmMath.. 332. 121-130 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Miyata, Takahisa, Watanabe, Tadashi: "An approximate system approach to box-counting dimension"Topology and its Appl.. 132(1). 49-69 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Miyata, Takahisa, Watanabe, Tadashi: "Approximate resolutions and the fractal category"Glasnik Matematicski. 38. 377-393 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Yagasaki, Tatsuhiko: "Embedding spaces and hyperspaces of polyhedra in 2-manifolds"Topology Appl.. 121(3). 247-254 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Yagasaki, Tatsuhiko: "The groups of PL and Lipschitz homeomorphisms of noncompact 2-manifolds"Bulletin of the Polish Academy of Sci, Math.. 51(4). 445-466 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Uno, Katsuhiro, Yoshiara, Satoshi: "Dade's conjecture for the simple O'Nan group"J.Algebra. 249. 147-185 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Yoshiara Satoshi: "The radical 2-subgroups of some sporadic simple groups"J.Algebra. 248. 237-264 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Koyama Akira, Moran Manulo: "On classes of maps which preserve finitisticness"Proc.Amer.Math.Soc.. 130(10). 3091-3096 (2002)

    • Related Report
      2003 Annual Research Report
  • [Publications] Boege M, Dydak J, R.Jimenez, Koyma A, Shchepin E.: "Borsuk-Sieklucki theorem in cohomological dimension"Fund.Math.. 171(3). 213-222 (2002)

    • Related Report
      2003 Annual Research Report
  • [Publications] Koyama Akira, Yokoi Katsuya: "Cohomological dimension and acyclic resolutions"Topology and its Applications. 120(1-2). 175-204 (2002)

    • Related Report
      2003 Annual Research Report
  • [Publications] Itokawa Y, Machigashira Y, Shiohama K: "Generalized Toponogov's theorem for manifolds with radial curvature bouded below"Contemp.Math.. 332. 121-130 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Miyata Takahisa, Watanabe Tadashi: "Approximate resolutions and box-counting dimension"Topology and its Applications. 132(1). 49-69 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Yagasaki, Tatsuhiko: "The groups of PL and Lipschitz homeomorphisms of noncompact 2-manifolds"Bull.Polish Acad.Sci.Math.. 51(4). 445-466 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Koyama, A., Dydak, J.: "Cohomological dimension of locally connected compacta"Topology and its Appl.. 113(1-3). 39-50 (2001)

    • Related Report
      2002 Annual Research Report
  • [Publications] Koyama, A., Yokoi, K.: "On Dranishnikov's cell-like resolutions"Topology and its Appl.. 113(1-3). 87-106 (2001)

    • Related Report
      2002 Annual Research Report
  • [Publications] 小山 晃: "コホモロジー次元論の最近の展開"数学. 53(4). 349-372 (2001)

    • Related Report
      2002 Annual Research Report
  • [Publications] Koyama, A., Dydak, J.: "Borsuk-Sieklucki theorem in cohomological dimension"Fund. Math.. 171(3). 213-222 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Koyama, A., Yokoi, K.: "Cohomological dimension and acyclic resplutions"Topology and its Appl.. 120(1-2). 175-204 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Koyama, A., Moron, K.: "On classes of maps which preserve finitisticness"Proc. Amer. Math. Soc.. 130(10). 3091-3096 (2002)

    • Related Report
      2002 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi