• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Spectra and Geometric structure of manifolds and graph

Research Project

Project/Area Number 14540081
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOKAYAMA UNIVERSITY

Principal Investigator

KATSUDA Atsushi  OKAYAMA UNIVERSITY, Faculty of Science, Associate Professor, 理学部, 助教授 (60183779)

Co-Investigator(Kenkyū-buntansha) SHIMAKAWA Kazuhisa  OKAYAMA UNIVERSITY, Faculty of Science, Professor, 理学部, 教授 (70109081)
TAMURA Hideo  OKAYAMA UNIVERSITY, Faculty of Science, Professor, 理学部, 教授 (30022734)
SAKAI Takashi  OKAYAMA UNIVERSITY, Faculty of Science, Professor, 理学部, 教授 (70005809)
IKEDA Akira  OKAYAMA UNIVERSITY, Faculty of Education, Professor, 教育学部, 教授 (30093363)
TANAKA Naoki  OKAYAMA UNIVERSITY, Faculty of Science, Associate Professor, 理学部, 助教授 (00207119)
Project Period (FY) 2002 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2003: ¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 2002: ¥1,900,000 (Direct Cost: ¥1,900,000)
Keywordsrandom walk / heat kernel / nilpotent / inverse problem / spectre / 半古典近似 / 安定性
Research Abstract

We investigated the asymptotics of the heat kernels on covering spaces. Our results gives an extent on of the results for abelian coverings. Some point of roof is also extension in the sense that the related operators can be decomposed using representation, theory. However we need to overcome several difficult points as follows. Since the discrete nilpotent group is not type I, there is no available re resentation theory. We embed it into the Lie group and use its representation theory. However there still remain difficulties to treat infinite dimensional representations in the irreducible decomposition. Next we connect the above with decomposition of operators through the iterated integrals. Then we use semi-classical analysis and deduce the finite dimensional "decomposition" in some sense. We have also done the preparation for more detailed asymptotic expansion and an extension to solvable group case.
Others investigate the followings projects except for collaborating the above ; Geometric inequalities(Sakai), Scattering theory under magnetic fields(Tamura), Isospectral manifolds(Ikeda), Nonlinear semigroup(Tanaka), Topology of configuration spaces(Shimakawa), Cut locus on ellipsoid(Kiyohara), Completeness of TopologicalSpaces(Yoshioka), p-Laplacians(Takeuchi).

Report

(3 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • Research Products

    (15 results)

All Other

All Publications (15 results)

  • [Publications] A.Katsuda: "Asymptotics of the heat kernels on nilpotent coverings and related topics"Contemporary Math.. (in press).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] M.Anderson, A.Katsuda 他3名: "Metric tensor estimate, geometric convergence, and inverse boundary problem"Electron.Res.Announc.Amer.Math.Soc. 9. 69-79 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.T.Ito, H.Tamura: "Aharanov--Bohm effect in scattering by a chain of point--like magnetic fields"Asymptot.Anal.. 34. 199-240 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] N.Tanaka: "Approximation of regularized evolution operators"Arch.Math.. 81. 38-49 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] A.Katsuda: "Asymptotics of the heat kernels on nilpotent coverings and related topics"Contemporary Math.. (in press).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] M.Anderson, A.Katsuda et al.: "Metric tensor estimate, geometric convergence, and inverse boundary problem"Electric Res.Announc.Amen.Math.Soc.. 9. 68-79 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.T.Ito, H.Tamura: "Aharanov-Bohm effect in scattering By a chain of point-like magnetic fields"Asymptot.Anal.. 34. 199-240 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] N.Tanaka: "Approximation of Regularized evolution Operators"Arch.Math.. 81. 38-49 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] A.Katsuda, Y.V.Kurylev, M.Lassas: "Stability and Reconstruction in Gel'fand Inverse Boundary Spectral Problem"New Analytic and Geometric methods in inverse problem. 309-322 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] A.Katsuda: "Asymptotics of the heat kernels on nilpotent coveringsand related topics"Contemporary Math.. (in press).

    • Related Report
      2003 Annual Research Report
  • [Publications] M.Anderson, A.Katsuda 他3名: "Metric tensor estimate, geometric convergence, and inverse boundary problem"Electron.Res.Announc.Amer.Math.Soc.. 9. 69-79 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] A.Katsuda, Y.V.Kurylev, M.Lassas: "Stability and Reconstruction in Gel'fand Inverse Boundary Spectral Problem"Springer Lect.Note in Math.. (in press).

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Ichinose, H.Tamura: "On the norm convergence of the self-adjoint Trotter-Kato product formula with error hound"Proc.Indian Acad.Sci.Math.Sci.. 112. 99-106 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Y.Kobayashi, N.Tanaka: "Semigroups of Locally Lipshitz operators"Mathematical J.Okayama Univ.. 44. 155-170 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 酒井 隆: "典率-20世紀までとその後?-"数学. 54巻3号. 292-307 (2002)

    • Related Report
      2002 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi