• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Probability Theory and Random numbers : Gap Theoretical Approach

Research Project

Project/Area Number 14540116
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionKOBE UNIVERSITY

Principal Investigator

FUKUYAMA Katusi  Kobe University, Faculty of Science, Professor, 理学部, 教授 (60218956)

Co-Investigator(Kenkyū-buntansha) HIGUCHI Yasunari  Kobe University, Faculty of Science, Professor, 理学部, 教授 (60112075)
TAKAYAMA Nobuki  Kobe University, Faculty of Science, Professor, 理学部, 教授 (30188099)
TAKANOBU Satoshi  Kanazawa University, Faculty of Science, Associate Professor, 理学部, 助教授 (40197124)
NAGASE Noriaki  Hirosaki University, Faculty of Science, Associate Professor, 理学部, 助教授 (30228019)
Project Period (FY) 2002 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥2,700,000 (Direct Cost: ¥2,700,000)
Fiscal Year 2004: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2003: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2002: ¥1,100,000 (Direct Cost: ¥1,100,000)
KeywordsCentral limit theorem / Law of the iterated logarithm / Discrepancy / uniformly distributed sequence / random numbers / gap theorem / lacunary series / invariance principles / Riesz-Raikov和 / non-conventional average
Research Abstract

Let ^2_0 be the class of function f with ∫^1_0 f(x)dx=0,∫^1_0 |f(x)|^2 dx < ∞.
For given sequence {n_k} of increasing integers and given class X⊂ L^2_0 of functions, we set
Ψ[X;{n_k}](t)=<lim sup>___<K→∞><sup>___<f∈X> (Σ^K_<k=1>f(n_kt))/(√<K log log K>)
We investigated the value distribution of this function.
We proved Ψ[{f};{n_k}]【less than or equal】< ||f||_A =Σ{|f^^^(v)|a.e. under Takahashi's gap condtion n_<k+1>/n_k 【greater than or equal】> 1 + c/k^β(c >0,β<1/2). We also proved the uniform version of this result :
Ψ[X;{n_k}]【less than or equal】sup||f||_A a.e.
for X of some conditions.

Report

(4 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • 2002 Annual Research Report
  • Research Products

    (15 results)

All 2004 2003 2002 Other

All Journal Article (10 results) Publications (5 results)

  • [Journal Article] An asymptotic property of gap series III2004

    • Author(s)
      K.Fukuyama
    • Journal Title

      Acta Mathematica Hungarica 102

      Pages: 43-52

    • NAID

      120005980768

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] A concrete upper bound in the uniform law of the iterated logarithm2004

    • Author(s)
      K.Fukuyama
    • Journal Title

      Studia Scientiarum Mathematicaruni Hungarica 41

      Pages: 339-346

    • NAID

      120005980791

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A concrete upper bound in the uniform law of the iterated logarithm,2004

    • Author(s)
      K.Fukuyama
    • Journal Title

      Studia Scientiarum Mathematicarum Hungarica 41

      Pages: 339-346

    • NAID

      120005980791

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The Dobrushin-Hryniv theory for the two-dimensional lattice Widom-Rowlinson model2004

    • Author(s)
      Y.Higuchi, J.Murai, J.Wang
    • Journal Title

      Stochastic analysis on large scale interacting systems, Adv.Stud.Pure Math. 39

      Pages: 233-281

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A concrete upper bound in the uniform law of the iterated logarithm2004

    • Author(s)
      K.Fukuyama
    • Journal Title

      Studia Scientiarum Mathematicarum Hungarica 41

      Pages: 339-346

    • NAID

      120005980791

    • Related Report
      2004 Annual Research Report
  • [Journal Article] An asymptotic property of gap series II,2003

    • Author(s)
      K.Fukuyama, B.Petit
    • Journal Title

      Acta Mathematica Hungarica 98

      Pages: 245-258

    • NAID

      120005980767

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The probability of two integers to be co-prime, revisited-on the behavior of CLT-scaling limit2003

    • Author(s)
      H.Sugita, S.Takanobu
    • Journal Title

      Osaka J.Math 40

      Pages: 945-976

    • NAID

      120005986956

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] An asymptotic property of gap series2002

    • Author(s)
      K.Fukuyama
    • Journal Title

      Acta Mathematica Hungarica 97

      Pages: 257-264

    • NAID

      120005980766

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The central limit theorem for non-conventional averages2002

    • Author(s)
      K.Fukuyama
    • Journal Title

      Limit Theorems in Probability and Statistics II(I.Berkes, E.Csaki, M.Csorgo eds.)(Janos Bolyai Mathematical Society, Budapest)

      Pages: 77-90

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Algebraic algorithms for D-modules and numerical analysis

    • Author(s)
      T.Oaku, Y.Shiraki, N.Takayama
    • Journal Title

      Computer mathematics, Lecture Notes Ser.Comput.(World Sci.Publishing) 10

      Pages: 23-39

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Publications] K.Fukuyama: "An asymptotic property of gap series II"Acta Mathematica Hungarica. 98. 229-242 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] K.Fukuyama: "An asymptotic property of gap series III"Acta Mathematica Hungarica. 102. 43-52 (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] K.Fukuyama: "An asymptotic property of gap series"Acta Mathematica Hungarica. 97. 209-216 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] K.Fukuyama: "An asymptotic property of gap series II"Acta Mathematica Hungarica. 98. 229-242 (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] K.Fukuyama: "The central limit theorem for non-conventional averages"Bolyai Society Mathematical Studies. 10(印刷中). (2003)

    • Related Report
      2002 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi