• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies on the hypergeometric diffeential equations considering the application for the coding theory

Research Project

Project/Area Number 14540153
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionChiba University

Principal Investigator

SHIGA Hironori  Chiba University, Graduate School of Science and Technology, Professor, 大学院・自然科学研究科, 教授 (90009605)

Co-Investigator(Kenkyū-buntansha) MATSUDA Shigeki  Chiba University, Faculty of Science, Associate professor, 理学部, 助教授 (90272301)
TSUTSUI Toru  Chiba University, Faculty of Science, Lecturer, 理学部, 講師 (00197732)
SUGIYAMA Ken-ichi  Chiba University, Faculty of Science, Associate professor, 理学部, 助教授 (90206441)
KITAZUME Masaaki  Chiba University, Faculty of Science, Professor, 理学部, 教授 (60204898)
ISHIMURA Ryuichi  Chiba University, Faculty of Science, Professor, 理学部, 教授 (10127970)
Project Period (FY) 2002 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2004: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2003: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2002: ¥1,500,000 (Direct Cost: ¥1,500,000)
KeywordsSchwarz function / Automorphic form / complex multiplication / Hypergeometric Differential Equation / Mirror Symmetry / K3 surface / monodromy / triangle group / フックス型微分方程式 / モノドロミー群 / アンドレ、オールト予想 / ピカール曲線 / 数論的不連続群 / 符号理論 / 暗号システム / 保型形式 / 格子 / 符号 / テータ関数
Research Abstract

We obtained the following results in our project.
In general we don't have algebraic values for the Schwarz map of Gauss hypergeometric differential equations foir tan algebraic argument. So we are asked to ansew the question, when we have its algebraic value? It is a difficult problem, and has been studied for many years by many mathematicians. By the study together with professor J.Wolfart in Frankfurt we discovered the problem is closely connected with the action of the CM field on the space of differentials. The results are pubished in (1)and (2).
In 2001 we made a study about the family with 6 parameters of K3 surfaces characterized by the structure of the Picard lattice. We make a research program to obtain some arithmetic application based on the these previous results.
We made a plan of the future research of modular functions induced from the family of K3 surfaces related to reflexive polytopes.

Report

(4 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • 2002 Annual Research Report
  • Research Products

    (11 results)

All 2004 Other

All Journal Article (4 results) Publications (7 results)

  • [Journal Article] Algebraic values of triangle Schwarz functions2004

    • Author(s)
      H.Shiga, J.Wolfart
    • Journal Title

      Tech.Per.Chiba Univ. Vol.20-5

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] Fuchsian differential equations with apparent singularities2004

    • Author(s)
      H.Shiga, T.Tsutsui, J.Wolfart
    • Journal Title

      Osaka J.Math. 41

      Pages: 1-34

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] Fuchsian differential equations with apparent singularities2004

    • Author(s)
      Shiga, Tsutsui, Wolfart
    • Journal Title

      Osaka J.Math. 41

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Algebraic values of triangle Schwarz functions2004

    • Author(s)
      Shiga, Wolfart
    • Journal Title

      Tech.Report Chiba Univ. 20-5

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Publications] H.Shiga, T.Tsutsui, J.Wolfart: "Triangle Fuchsian Differential Equations with Apparent Singularities"Osaka J.Math.. (掲載予定). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] K.Koike, H.Shiga, N.Takayama, T.Tsutsui: "Study on the family of K3 surfaces induced from the lattice (D_4)^3【symmetry】 <-2>【symmetry】<2>"International Journal of Mathematics. 12・9. 1049-1085 (2001)

    • Related Report
      2002 Annual Research Report
  • [Publications] K.Koike, H.Shiga: "The family of K3 surfaces with a transcendental lattice (V(2))^2×<-2>^4 for a general member"京都大学数理解析研究所講究録. (未定). (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] M.Streit, J.Wolfart: "Cyclic projective planes and Wada dessins"Doc. Math.. 6. 39-68 (2001)

    • Related Report
      2002 Annual Research Report
  • [Publications] S.Matsuda: "Katz correspondence for quasi-unipotent overconvergent isocrystals"Compositio Math.. 134. 1-34 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] M.Harada, M.Kitazume: "ZZ_6 code constructions of the Leech lattice and the Niemeier lattices"European J. Combin.. 23. 573-581 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] M.Kitazume, A.Munemasa: "Even unimodular Gaussian lattices of rank 12"J. Number theory. 95. 77-94 (2002)

    • Related Report
      2002 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi