• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Harmonic analysis in a domain with fractal boundary

Research Project

Project/Area Number 14540157
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionOchanomizu University

Principal Investigator

WATANABE Hisako  Ochanomizu University, Faculty of Science, Professor, 理学部, 教授 (70017193)

Co-Investigator(Kenkyū-buntansha) TAKEO Fukiko  Ochanomizu University, Faculty of Science, Professor, 理学部, 教授 (40109228)
YOSHIDA Hidenobu  Chiba Univ., Graduate School of Natural Sciences, Professor, 大学院・自然科学研究科, 教授 (60009280)
Project Period (FY) 2002 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥2,900,000 (Direct Cost: ¥2,900,000)
Fiscal Year 2004: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2003: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2002: ¥1,100,000 (Direct Cost: ¥1,100,000)
Keywordsfractal lateral boundary / double layer heat potentials / Whitney decomposition / Besov spaces / Besov norms / maximal functions / uniform domains / boundedness of operators / 擬距離空間 / donbling測度 / 極大関数 / 容量による積分 / weak type評価 / ベゾフ空間 / 放物型シリンダー / ホモジニアス型空間 / α-Rieszポテンシャル / ダブリング測度 / ベゾフノルム / 放物型Whitny分解 / 作用素の有界性 / 特異積分 / フラクタルな側面
Research Abstract

We consider the initial-boundary-value problems in a domain Ω=D×[O,T] with fractal lateral boundary S. It often occurs that an operator K on the Besov space B on the lateral boundary is bounded with respect to the Besov norms on S. We can prove the boundedness of an operator from B to B in the following method.
(1)We extend a function f defined on S to R×[O,T] by using an extension operator E.
(2)The Besov norm of f is estimated by the integral of |▽f(x)|×δ(x)^n over Ω, where δ(x) is the distance from x to S and n is a suitable number.
(3)Instead of the boundedness of K we prove the boundedness of an operator from a function space on Ω to a function space on the outside of Ω by using the maximal functions between Ω and the outside of Ω.
We proved the boundedness of an operator K, which is important to solve the Dirichlet problem by using double layer heat potentials.

Report

(4 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • 2002 Annual Research Report
  • Research Products

    (16 results)

All 2003 2002 Other

All Journal Article (13 results) Publications (3 results)

  • [Journal Article] Estimates of the Besov norms on the fractal boundary and applications.2003

    • Author(s)
      H.Watanabe
    • Journal Title

      J.Math.Soc. Japan 55,3

      Pages: 565-589

    • NAID

      10011478174

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Beurling-Dahlberg-Sjogren type theorems for minimally thin sets in a cone2003

    • Author(s)
      H.Yoshida, I.Miyamoto, M.Yanagishita
    • Journal Title

      Canad.Math.Bull. 46

      Pages: 254-264

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Supercyclic and chaotic and translation semigroups2003

    • Author(s)
      F.Takeo, M.Matsui, M.Yamada
    • Journal Title

      Proc.Amer.Math.Soc. 131

      Pages: 3535-3546

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Estimates of the Besov norms on the fractal boundary and applications2003

    • Author(s)
      H.Watanabe
    • Journal Title

      J.Math.Soc.Japan 55-3

      Pages: 565-589

    • NAID

      10011478174

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Supercyclic and chaotic translation semigroups2003

    • Author(s)
      F.Takeo, M.Matsui, M.Yamada
    • Journal Title

      Proc.Amer.Math.Soc. 131

      Pages: 3535-3546

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Parabolic extension of lateral functions in a cylindrical domain2002

    • Author(s)
      H.Watanabe
    • Journal Title

      Natur.Sci.Rep.Ochanomizu Univ 53,2

      Pages: 21-34

    • NAID

      110006559606

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Two criterions of Wiener type for minimally thin sets and rarefied sets in a cone.2002

    • Author(s)
      H.Yoshida, I.Miyamoto
    • Journal Title

      J.Math.Soc. Japan 54

      Pages: 489-512

    • NAID

      10009480844

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On chaotic semigroups generated by certain types of first-order differential operators2002

    • Author(s)
      F.Takeo, M.Matsui
    • Journal Title

      数理解析研究所講究録 1253

      Pages: 108-120

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Parabolic extension of lateral functions in a cylindrical domain2002

    • Author(s)
      H.Watanabe
    • Journal Title

      Natur.Sci.Rep.Ochanomizu Univ. 53-2

      Pages: 21-34

    • NAID

      110006559606

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Two criterions of Wiener type for minimally thin sets and rarefied sets in a cone2002

    • Author(s)
      H.Yoshida, I.Miyamoto
    • Journal Title

      J.Math.Soc.Japan 54

      Pages: 488-512

    • NAID

      10009480844

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On chaotic semigroups generated by certain types of first-order differential operators2002

    • Author(s)
      F.Takeo, M.Matsui
    • Journal Title

      RIMS 1253

      Pages: 108-120

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On harmonic majorization of the Martin function at infinity in a cone.

    • Author(s)
      H.Yoshida I.Miyamoto, M.Yanagishita
    • Journal Title

      Czech Math.J. (to appear)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Chaos and hypercyclicity for solution semigroups to some partial differential equations

    • Author(s)
      F.Takeo
    • Journal Title

      Nonlinear Analysis, Theory, Methods and Applications (to appear)

    • Related Report
      2004 Annual Research Report
  • [Publications] Hisako Watanabe: "Estimates of the Besov norms on the fractal boundary and applications"J.Math.Soc.Japan. 55・3. 565-589 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Hisako Watanabe: "Parabolic extension of lateral functions in a cylindrical domain"Natur.Sci.Rep.Ochanomizu Univ.. 53・2. 21-34 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Hisako Watanabe: "Estimated of the Besov norms on the fractal boundary and applications"J.Math.Soc.Japan. 55・3(To appear). (2003)

    • Related Report
      2002 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi