• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on non-liner partial differential equations by means of besov tpe norms

Research Project

Project/Area Number 14540186
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionCHUO UNIVERSITY

Principal Investigator

MURAMATSU Toshinobu  Chuo University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (60027365)

Co-Investigator(Kenkyū-buntansha) MITSUMATSU Yoshihiko  Chuo University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (70190725)
MATSUYAMA Yosshio  Chuo University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (70112753)
OHHARU Shinnosuke  Chuo University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (40063721)
MOCHIZUKI Kiyoshi  Chuo University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (80026773)
吉野 正史  中央大学, 経済学部, 教授 (00145658)
Project Period (FY) 2002 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥1,800,000 (Direct Cost: ¥1,800,000)
Fiscal Year 2003: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2002: ¥1,000,000 (Direct Cost: ¥1,000,000)
KeywordsBesov type norm / Fourier restiction norm / semilinear Schrodunger equation / trilinear estimates / KdV equtatiion / initial value problem / well-posednessT / 適切性 / 三重線型評価 / 非線型シュレディガー方程式 / Besov空間 / 臨界指数
Research Abstract

We defined the Besov type norms which are generalizations of the Fourier restriction norm due to Bourgain, appilled them to the initial value problem of nonlimear partial differential equations, and obtained the following results :
1. The intial value problem for the semilinear Schrodinger equation.
(1)Quadratic nonlimearity case.
For the case whetre the space dimension is 1 or 2 we proved that the intial value problem in the Sobolev space of the critical order is well-posed.
We also obtained the results for the case where the space dimension is greater than 2. The key method is bilinear estimates by meas of Besov type norms.
(2)Cubic nonlinearity case
We proved that the initial value problem is well-posed in the Besov space of critical order when the space is 1, and this result is better than that obtained by the Fourier restriction norm. The key method is trilinear estimates by means of Besov type norms.
(3) We find that the initial value problem is well-posed in the space of square integrable functions when the nonliniarity is the derivative of the squrer of the complex conjugate of the unknown function.
2. The initial value problem for KdV equation.
We proves that the initial value problem is well-posed in the Sobolev space which is very closed to that of order -3/4 (the critical order).

Report

(3 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • Research Products

    (20 results)

All Other

All Publications (20 results)

  • [Publications] 村松壽延: "The initial value problem for the 1-D semilinear Schro"dinger equation in Besov spaces"Jornal of the Mathematical Society of Japan. 掲載決定.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 大春慎之助: "On a class of reaction-diffusion systems describing bone remodeling phenomena"Nihonki Mathematical Journal. 13. 17-32 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 三松佳彦: "Foliations and contact structures on 3-manifolds"Proc.Foliations : Geometry nad Dynamics. 75-125 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 望月 清: "Inverse problem for interior spectral data of the Dirac operators on a fimite interval"Publ.RIMS, Kyoto Univ.. 38. 387-395 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 望月 清: "Inverse scattering for a small nonselfadjoint perturbation of the weve equations"Analysis and Applications by H.G.W。Begehr(ed),Kluwer Academic Publishers. 303-316 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 田岡志婦: "Well-posedness of the Cauchy problem for the semilinear Schro"dinger equation with qudratic nonlinearity in Besov spaces"Hokkaido Mathematical J.. 掲載決定.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Muramatu, T., Taoka, S.: "The initial value problem for the semilinear euatin in Besov spaces"J. Mathematical Society of Japan. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Matsuura, Y., Oharu, S., Tebbs, D.: "On a class of reaction-diffusion systems describing bone remodeling phenomena"Ihonkai Mathematical J.. Vol.13. 17-32 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Mitsumatsu, Y.: "Foliations and contact structures on 3-manifolds"Proc Of Foliation: Geometry and Dynamics (by Jwalczas (ed)) (World Scientific). 75-125 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Mochizuki, K., Trooshin, I.: "Inverse problem for interior spectral data of the Dirac opetators on a fimite interval"Publ. RIMS, Kyoto Univ.. Vol.38. 387-395 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Mochizuki, K.: "Invers scattering for a small nonselfadjoint perturbation of the wave equations"Annalysis and Applictions by H.G.W.Begehr (ed), (Kiuwer Academic Publishers). 303-316 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Taoka, S.: "Well-posedness of the Cauchy problem for the semilinear Schro"dinger equation with quadratic nonlinearity in B esov spaces"Hokkaido Mathematical J.. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 村松壽延: "The initial value problem for the 1-D semilinear Schro"dinger equation in Besov spaces"Journal of the Mathematical Society of Japan. 掲載決定. (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] 大春慎之助: "On the semigroups approach to age-dependent spatially distributed two sex models of population dynamics"Adv.Math.Sci.Appl.. 13. 423-442 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 望月 清: "Inverse scattering for a small nonselfadjoint perturbation of the weve equations"Analysis And Applications by H.G.W.Begehr (ed), Kluwer Academic Publishers. 303-316 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 田岡志婦: "Well-posedeness of the Cauchy problem for the semilinear Schro"dinger equation with qudratic nonlinear in Besov spaces"Hokkaido Mathematical J.. 掲載決定. (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] T.Muramatu, S.Taoka: "The initial value problem for 1-D Schrodinger equation in Besov spaces"Journal of the Mathematicl Society of Japan. (未定).

    • Related Report
      2002 Annual Research Report
  • [Publications] Y.Matsuyama: "On totally real submaniholds of a complex projective space"Nihonkai Mathematical Journal. 13・2. 153-157 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Y.Mitsumatsu: "Foliation and contact structures on 3-maniholds"Proceeding of Foliations : Geometry ans Dynamics. 75-125 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 三松義彦, 矢野泰久: "Riemann多様体上の非圧縮流体の幾何"数理解析研究所講究録. 1260. 33-47 (2002)

    • Related Report
      2002 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2021-10-18  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi