• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on Perron-Frobenius operator and fractals

Research Project

Project/Area Number 14540189
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionNihon University

Principal Investigator

MORI Makoto  Nihon University, College of Humanities and Sciences, Professor, 文理学部, 教授 (60092532)

Co-Investigator(Kenkyū-buntansha) SUZUKI Osamu  Nihon University, College of Humanities and Sciences, Professor, 文理学部, 教授 (10096844)
YAMAURA Yoshihiko  Nihon University, College of Humanities and Sciences, associate Professor, 文理学部, 助教授 (90255597)
FUKUDA Takuo  Nihon University, College of Humanities and Sciences, Professor, 文理学部, 教授 (00009599)
Project Period (FY) 2002 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥2,800,000 (Direct Cost: ¥2,800,000)
Fiscal Year 2003: ¥1,400,000 (Direct Cost: ¥1,400,000)
Fiscal Year 2002: ¥1,400,000 (Direct Cost: ¥1,400,000)
Keywordsergodic theory / dynamical system / Hausdorff dimension / spectrum / psudo random numbe / 乱数 / discrepancy / Perron-Frobenius作用素 / Perron-Frobenius operator / フラクタル
Research Abstract

Expanding the idea of van der Corput sequences, we construct random numbers using inverse images of piecewise linear transformations. The discrepancy of this random number has deep connection with the ergodic properties of the dynamical system generated by piecewise linear transformations. For example, it is proved that if the dynamical system is mixing, then the random number is uniformly distributed. Moreover, we can deeply study the ergodic properties of the dynamical system by The spectra of thePerron-Frobenius operator. In terms of the spectra, the random number is uniformly distributed if 1 is a simple eigenvalue., and no other eigenvalues on the unit circle. The second greatest eigenvalue of the Perron-Frobenius operator is at least the reciprocal of the slope of the transformation in modulus. We proved that the random number is of low discrepancy if the second greatest eigenvalue equals its minimum in modulus. We extend this idea to construct higher dimensional low discrepancy. sequences, and we succeeded to construct two and three dimensional low discrepancy sequences.
We also consider the Hausdorff dimensions from the view point of statistical mechanics, and proved it equals' a zero of the pressure. We also calculate the Hausdorff dimension of trees. The articles of these topics are now submitted.

Report

(3 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • Research Products

    (17 results)

All Other

All Publications (17 results)

  • [Publications] Makoto Mori: "Construction of two dimensional low discrepancy sequences"Monte Carlo methods and Applications. 8. 159-170 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Makoto Mori, Mariko Ohno, Yuko Ichikawa: "Hausdorff Dimension of a Cantor set on R^1"Tokyo J.Math.. 26. 371-390 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Yoshihiko Yamaura: "A construction of a Lipschitz continuous minimizer of a free boundary problem"Nonlinear Analysis. 54. 1175-1191 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] V.Berthe, S.Ferenzi, C.Mauduit, A.Siegel編: "Substitutions in Dynamics, Arithmetics and Combinatorics"Springer. 402 (2004)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 森 真: "確率と確率過程の基礎"共立出版. 198 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Makoto Mori: "Construction of two dimensional low discrepancy sequences"Monte Carlo methods and Applications. Vol 8. 159-170 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] Makoto Mori, Mariko Ohno, Yuko Ichikawa: "Hausdorff Dimension of a Cantor set on R^1"Tokyo J.Math.. Vol.26. 371-390 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 森 真: "Construction of tow dimensional low discrepancy sequences"Monte Carlo methods and Application. vol.8No.2. 159-170 (2002)

    • Related Report
      2003 Annual Research Report
  • [Publications] Y.Ichikawa, M.Mori, M.Ohno: "Hausdorff Dimension of a Cantor set on $R^1$"Tokyo J.Math.. vol.26,No.2. 371-390 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 森 真: "Hausdorff dimension as Thermodynamical Formalism"Sci.Rep.Nihon University. (未定). (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 山浦 義彦: "汎関数の近似理論の適用によるリプシッツ連続な最小化関数の構成"数理解析研究所講究録. 1254. 23-31 (2002)

    • Related Report
      2003 Annual Research Report
  • [Publications] 山浦 義彦: "A construction of a Lipschitz continuous minimizer of a free boundary"Nonlinear Analysis. 54. 1175-1191 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 田中 ゆかり, 森 真: "講談社"なっとくする統計. 245 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Makoto Mori: "Construction of two dimensional low discrepancy sequences"Monte Carlo methods and Applications. 8. 159-170 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Yoshihiko Yamaura: "自由境界問題とその近似について"日本応用数理学会. (電子ジャーナル). (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Yoshihiko Yamaura: "汎関数の近時理論の適用によるリプシッツ連続な最小化関数の構成"京都大学数理解析研究所考究録. 1254. 23-31 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 森 真, 田中 ゆかり: "なっとくする統計"講談社. 245 (2003)

    • Related Report
      2002 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi