• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Representations of solvable Lie groups and differential operators

Research Project

Project/Area Number 14540194
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKinki University

Principal Investigator

FUJIWARA Hidenori  Kinki University, School of Humanity-Oriented Science and Engeneering, Professor, 産業理工学部, 教授 (50108643)

Project Period (FY) 2002 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥2,100,000 (Direct Cost: ¥2,100,000)
Fiscal Year 2004: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2003: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2002: ¥700,000 (Direct Cost: ¥700,000)
Keywordsnilpotent Lie group / solvable Lie group / unitary representation / irreducible decomposition / orbit method / multiplicity / invariant differential operator / monomial representation / 巾零リー群 / 巾零リー環 / 誘導表現 / 微分作用素 / 既約分解 / 表現の制限
Research Abstract

So-called "Polynomial conjecture" of Corwin-Greenleaf is a well known difficult conjecture for monomial representations of a connected and simply connected nilpotent Lie group. It has been a central aim of this research project. As there exists a strong parallelism for inducing and restricting representations, I studied this duality for nilpotent Lie groups in the framework of celebrated orbit method. In collaboration with A.Baklouti, G.Lion, J.Ludwig and B.Magneron, I obtained the following main results. Let G be a connected, simply connected nilpotent Lie group.
1.Let χ be a unitary character of an analytic subgroup H of G. We consider the monomial representation τ induced by χ up to G. The algebra of invariant differential operators on the line bundle over G/H associated to these data is algebraic over a system of generators of the set of central elements of Corwin-Greenleaf if and only if τ is of finite multiplicities.
2.(Polynomial conjecture of Corwin - Greenleaf) Suppose that the monomial representation τ is of finite multiplicities. Then, the algebra of invariant differential operators on the line bundle over G/H associated to these data is isomorphic to the algebra of H-invariant polynomial functions on a certain affine subspace of the linear dual of the Lie algebra of G.
3. The above result 1 and the Frobenius reciprocity in distribution sense obtained in the previous research program have their counterpart for the restrictions. We formulated them for the restriction π|K of an irreducible unitary representation π of G to an analytic subgroup K. Then, we proved them in certain particular cases.

Report

(4 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • 2002 Annual Research Report
  • Research Products

    (15 results)

All 2005 2004 2003 Other

All Journal Article (12 results) Publications (3 results)

  • [Journal Article] Analysis of restrictions of unitary representations of a nilpotent Lie group2005

    • Author(s)
      A.Baklouti, H.Fujiwara, J.Ludwig
    • Journal Title

      Bull.Sci.Math. 129

      Pages: 187-209

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Analysis of restrictions of unitary representations of a nilpotent Lie group2005

    • Author(s)
      A.Baklouti, H.Fujiwara, J.Ludwig
    • Journal Title

      Bulletin des Sciences Mathematiques 129

      Pages: 187-209

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Commutativite des operateurs differentiels sur l'espace des representations restreintes d'un groupe de Lie nilpotent2004

    • Author(s)
      A.Baklouti et H.Fujiwara
    • Journal Title

      J.Math.Pures Appl. 83

      Pages: 137-161

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Commutativite des operateurs differentiels sur l'espace des representations restreintes d'un groupe de Lie nilpotent2004

    • Author(s)
      A.Baklouti, H.Fujiwara
    • Journal Title

      J.Math.Pures Appl. 83

      Pages: 137-161

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Certaines remarques sur l'algebre des opperateurs differentiels invariants pour la representation monomiale2004

    • Author(s)
      H.Fujiwara
    • Journal Title

      African Journal of Mathematics 12

      Pages: 78-94

    • Related Report
      2004 Annual Research Report
  • [Journal Article] A commutativity criterion for the algebra of invariant differential operators on nilpotent homogeneous spaces2003

    • Author(s)
      H.Fujiwara, G.Lion, B.Magneron et S.Mehdi
    • Journal Title

      Math.Ann. 327

      Pages: 513-544

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Operateurs differentiels associes a certaines representations unitaires d'un groupe de Lie resoluble exponentiel2003

    • Author(s)
      A.Baklouti et H.Fujiwara
    • Journal Title

      Compositio Math. 139

      Pages: 29-65

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A commutativity criterion for the algebra of invariant differential operators on nilpotent homogeneous spaces2003

    • Author(s)
      H.Fujiwara, G.Lion, B.Magneron, S.Mehdi
    • Journal Title

      Math.Ann. 327

      Pages: 513-544

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Operateurs differentiels associes a certaines representations unitaires d'un groupe de Lie resoluble exponentiel2003

    • Author(s)
      A.Baklouti, H.Fujiwara
    • Journal Title

      Compositio Math. 139

      Pages: 29-65

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Certaines remarques sur l'algebra des operateurs differentiels invariants pour la representation monomiale d'un groupe de Lie nilpotent

    • Author(s)
      H.Fujiwara
    • Journal Title

      in African J.Math. (to appear)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Certaines remarques sur l'algebre des operateurs differentiels invariants pour la representation monomiale d'un groupe de Lie nilpotent

    • Author(s)
      H.Fujiwara
    • Journal Title

      African J.Math. (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Sur la conjecture polynomiale

    • Author(s)
      H.Fujiwara, G.Lion
    • Journal Title

      (in preparation)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Publications] A.Baklouti, H.Fujiwara: "Operateurs differentiels associes a certaines representations unitaires d'un groupe de Lie resoluble exponentiel"Compositio Mathematica. 139. 29-65 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] H.Fujiwara, G.Lion, B.Magneron, S.Mehdi: "A commutativity criterion for certain algebra of invariant differential operators on nilpotent homogeneous spaces"Mathematische Annalen. 327. 513-544 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] A.Baklouti, H.Fujiwara: "Commutativite des operateurs differentiels sur l'espace des representations restreintes d'un groupe de Lie nilpotent"Journal de Mathematique ures et Appliquees. 83. 137-161 (2004)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi