• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on Spectral Theory of Dirac operators

Research Project

Project/Area Number 14540218
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionRitsumeikan University

Principal Investigator

YAMADA Osanobu  Ritsumeikan Univ., Fac Science and Engineering, Professor, 理工学部, 教授 (70066744)

Co-Investigator(Kenkyū-buntansha) ITO Hiroshi  Ehime University, Fac. Engineering, Associate Professor, 工学部, 助教授 (90243005)
SHINYA Hitoshi  Ritsumeikan Univ., Fac. Science and Engineering, Professor, 理工学部, 教授 (70036416)
ARAI Masaharu  Ritsumeikan Univ., Fac. Science and Engineering, Professor, 理工学部, 教授 (20066715)
OKAJI Takashi  Kyoto University, Fac. Science, Associate Professor, 大学院・理学研究科, 助教授 (20160426)
Project Period (FY) 2002 – 2003
Project Status Completed (Fiscal Year 2003)
Budget Amount *help
¥2,700,000 (Direct Cost: ¥2,700,000)
Fiscal Year 2003: ¥1,300,000 (Direct Cost: ¥1,300,000)
Fiscal Year 2002: ¥1,400,000 (Direct Cost: ¥1,400,000)
KeywordsDirac operator / Schroedinger operator / spectrum / eigenvalue / magnetic field / unique continuation property
Research Abstract

We investigated the spectraiTheoty of Dirac operators which appear in relativistic quantum mechanics. In particular, we are interested in the Dirac operator with potentials diverging at infinity. There are some differences in the spectral theoiy betweenDirac operators and Schmedinger operators. If potentials diverge to positive or negative infinity at infinity, the spectnim of Dirac operators cover the whole real line and have no eigenvalues, in general. Concerning the absence of eigenvalues H.Kalf, T. Okaji and 0.Yamada wrote
"Absence of elgenvalues of Dime operators with potentials diverging at infinity".
Under weaker conditions than above we studied that the spectrum covers the whole real line in
"A note on the essential spectwm of Schroedinger operators and Dime operators with magnetic fields and diverging potentials at inflnity" (Mem. Inst. Sci. Eng., Ritsumeikan Univ., 61,53-60,2002).
We have also studied the strong unique continuation property of Dime equations with M. Ikoma, a graduate student of Ritsumeikan University, and wrote
"Storong unique continuation property of two-dimensional Dirac equations with Aharonov-Bohm fields".
The investigators have also studied their own subjects extensively. T. Okaji extended the result on the absene of eigenvalues to Dirac type operators and investigated the absolute continuity of the spectrum of Dime operators. H.Ito investigated the scattering theoiy of Schmedinger operators. H. Shin'ya studied representation theoiy of locally compact motion groups.

Report

(3 results)
  • 2003 Annual Research Report   Final Research Report Summary
  • 2002 Annual Research Report
  • Research Products

    (25 results)

All Other

All Publications (25 results)

  • [Publications] H.Kalf, T.Okaji, O.Yamada: "Absence of eigenvalues of Dirac equations with potentials diverging at infinity"Mathematische Nachrichten. 259. 19-41 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] M.Ikoma, O.Yamada: "Strong unique continuation property of two-dimensional Dirac equations with Aharonov-Bohm fields"Proc. Japan Acad., Ser. A. 79. 158-161 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.T.Ito, H.Tamura: "Aharonov-Bohm effect in scattering by a chain of point-like magnetic fields"Asymptotic Analysis. 34. 199-240 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Okaji: "Strong unique continuation property for time harmohic Maxwell equations"J. Math. Soc. Japan. 54. 87-120 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Okaji: "Absence of eigenvalues of Dirac type operators"Nonlinear Differential Equations Appl. Birkhaeuser. 52. 157-176 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Shin'ya: "Spherical matrix functions and Banach representability for locally compact motion groups"Japanese J. Math.. 28. 163-201 (2002)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] 大鍛冶 隆司(編集・研究代表者): "波動現象と漸近解析"京都大学数理解析研究所講究録(1315). 175 (2003)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Kalf, T.Okaji, O.Yamada: "Absence of elgenvakies of Dirac equations with potentials at infinity"Mathematische Nachiihten. 259. 19-41 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] M.Ikoma, O.Yamada: "Strong unique continuation property of two-dimensional Dirac equations with Ahaionov-Bohm fields"Proc. Japan Acad, Ser. A. 79. 158-161 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.T Ito, H.Tamura: "Aharonov-Bobm effect in scattering by a chain of point-like magnetic fields"Asympbtic Analysis. 34. 199-240 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Okaji: "Strong unique continuation property fur time hamionic Maxwell equations"J. Math. Soc. Japan. 58. 97-120 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Okaji: "Absence of elgenvalues of Dirac type operators"Nonlinear Differential Equations Appt(Birkhaeuser). 52. 157-176 (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Shiya: "Spherical matrix functions and Banach representability for locally compact motion groups"Japanese J. Math.. 28. 163-201 (2002)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] T.Okaji (editor): "Wave Phenomena andAsyrnptoticAnalysis"Kokyuioku(RiMS, Kyoto Univ.). 1315. (2003)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2003 Final Research Report Summary
  • [Publications] H.Kaif, T.Okaji, O.Yamada: "Absence of eigenvalues of Dirac operators with potentials diverging at infinity"Mathematiche Nachrichten. 259. 19-41 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] M.Ikoma, O.Yamada: "Strong unique continuation property of two-dimensional Dirac equations with Aharonov-Bohm fields"Proc.Japan Acad., Ser.A. 79・9. 158-161 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] T.Okaji: "Absence of eigenvalues of Dirac type operators"Nonlinear Differential Equations Appl.Birkhaeuser. 52. 157-176 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] H.Ito, H.Tamura: "Aharonov-Bohm effect in scattering by a chain of point-like magnetic fields"Asymptotic Analysis. 34. 199-240 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 大鍛治 隆司(編集・代表者): "波動現象と漸近解析"京都大学数理解析研究所講究録(1315). 175 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Osanobu Yamada: "A note on the essential spectrum of Schroedinger operators and Dirac operators with magnetic fields and diverging potentials at infinity"Mem.Res.Sci.Engrg.Ritumeikan Univ.. 61. 53-60 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Hitoshi Shin'ya: "Spherical matrix functions and Banach representability for locally compact motion groups"Japanese J.Math.. 28・2. 163-201 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Hiroshi T.Ito: "Aharonov-Bohm effect in scattering by a chain of point-like magnetic fields"Asymptotic Analysis. 34. 199-240 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Takashi Okaji: "Strong unique continuation property for elliptic systems of normal type in two independent variables"Tohoku Math.J.. 54. 309-318 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Takashi Okaji: "Strong unique continuation property for time harmonic Maxwell equations"J.Math.Soc.Japan. 54・1. 87-120 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Takashi Okaji: "Absence of eigenvalues of Dirac type operators II"数理解析講究録. 1255. 152-197 (2002)

    • Related Report
      2002 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi