• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Practical Identification of Dipolar Sources in Human Brain

Research Project

Project/Area Number 14550059
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Engineering fundamentals
Research InstitutionOsaka University

Principal Investigator

OHNAKA Kohzaburo  Osaka University, Graduate School of Engineering, Associate Professor, 大学院・工学研究科, 助教授 (60127199)

Co-Investigator(Kenkyū-buntansha) YAGI Atsushi  Osaka University, Graduate School of Engineering, Professor, 大学院・工学研究科, 教授 (70116119)
YAMAMOTO Yoshitaka  Osaka University, Graduate School of Information Science and Technology, Associate Professor, 大学院・情報科学研究科, 助教授 (30259915)
NAKAGUCHI Etsushi  Osaka University, Graduate School of Information Science and Technology, Assistant Professor, 大学院・情報科学研究科, 助手 (70304011)
OHE Takashi  Okayama University, Faculty of Informatics, Associate Professor, 総合情報学部, 助教授 (90258210)
YAMATANI Katsu  Shizuoka University, Faculty of Engineering, Assistant Professor, 工学部, 助手 (80293611)
Project Period (FY) 2002 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2004: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2003: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2002: ¥1,600,000 (Direct Cost: ¥1,600,000)
KeywordsInverse Source Problem / Dipole Model / Poisson Equation / Maxwell Equation / Numerical Method / Charge Simulation Method / Magnetoencephalogram / ボアソン方程式 / ヘルムホルツ方程式 / 3次元ポアソン方程式
Research Abstract

In various fields of science and engineering, many problems can be considered as inverse problems for partial differential equations. One of such problems is to identify the electrical activity in the human brain from observation data of electric and magnetic fields called ElectroEncephaloGram and Magneto-EncephaloGram. Many researchers assume spherically symmetric conductor model for the human head and dipole model for the electrical activity of human brain. Our problem is to identify locations, moments, and number of dipolar sources in the human brain from observations of electric and magnetic fields outside of the human head.
Before this project, we have already proposed two identification methods for a quasi-static case using magnetic observations. In this project, we extend our investigations of such problems. The main results of our project are shown as follows :
1. Improvement of our method which is mentioned in our previous research. Without using a-priori information, improved method gives reasonable results with these error estimates.
2. By using electric and magnetic observations, we can obtain all components of dipolar sources.
3. Extension of governing equation such that Poisson equation is extended to Helmholtz equation or time harmonic Maxwell equation.
4. Uniqueness and convergence of numerical solution obtained by Charge Simulation Method.
The results are shown in references, and we are preparing two papers at the present time. Further discussions are needed for the analytical and numerical stability of identified results.

Report

(4 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • 2002 Annual Research Report
  • Research Products

    (24 results)

All 2004 2003 2002 Other

All Journal Article (15 results) Publications (9 results)

  • [Journal Article] 3次元Helmholtz方程式に対する重み付き積分に基づいた複数点ソースの推定2004

    • Author(s)
      乾 裕一
    • Journal Title

      日本応用数理学会論文誌 14巻

      Pages: 179-192

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On the Solvability of Complete Abstract Differential Equations of Elliptic Type2004

    • Author(s)
      A.Favini
    • Journal Title

      Funkcialaj Ekvacioj Vol.47

      Pages: 205-224

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Uniqueness and Convergence of Numerical Solution of the Cauchy Problem for the Laplace Equation by a Charge Simulation Method2004

    • Author(s)
      T.Ohe
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics Vol.21

      Pages: 339-359

    • NAID

      10018379815

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] An Identification Method of Point Sources for Three-dimensional Helmholtz Equation using Weighted Integral2004

    • Author(s)
      H.Inui, K.Ohnaka
    • Journal Title

      Transactions of the Japan Society for Industrial and Applied Mathematics (in Japanese) 14-3

      Pages: 179-192

    • NAID

      110001878254

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On the Solvability of Complete Abstract Differential Equations of Elliptic Type2004

    • Author(s)
      A.Favini, R.Labbas, H.Tanabe, A.Yagi
    • Journal Title

      Funkcialaj Ekvacioj 47-2

      Pages: 205-224

    • NAID

      130000141159

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Uniqueness and Convergence of Numerical Solution of the Cauchy Problem for the Laplace Equation by a Charge Simulation Method2004

    • Author(s)
      T.Ohe, K.Ohnaka
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics 21-3

      Pages: 339-359

    • NAID

      10018379815

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] 3次元Helmholtz方程式に対する重み付き積分に基づいた複数点ソースの椎定2004

    • Author(s)
      乾 裕一
    • Journal Title

      日本応用数理学会論文誌 14巻・3号

      Pages: 179-192

    • Related Report
      2004 Annual Research Report
  • [Journal Article] On the Solvability of Complete Abstract Differential Equations of Elliptic Type2004

    • Author(s)
      A.Favini
    • Journal Title

      Funkcialaj Ekvacioj Vol.47・No.2

      Pages: 205-224

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Uniqueness and Convergence of Numerical Solution of the Cauchy Problem for the Laplace Equation by a Charge Simulation Method2004

    • Author(s)
      T.Ohe
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics Vol.21・No.3

      Pages: 339-359

    • NAID

      10018379815

    • Related Report
      2004 Annual Research Report
  • [Journal Article] A Reliable Identification of Electric Current Dipoles using Harmonic Functions2003

    • Author(s)
      H.Inui
    • Journal Title

      Journal of Computational and Applied Mathematics Vol.157

      Pages: 107-123

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A Reliable Identification of Electric Current Dipoles using Harmonic Functions2003

    • Author(s)
      H.Inui, K.Yamatani, K.Ohnaka
    • Journal Title

      Journal of Computational and Applied Mathematics 157-1

      Pages: 107-123

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Fully Discrete Approximation by Galerkin Runge- Kutta Methods for Quasilinear Parabolic Systems2002

    • Author(s)
      E.Nakaguchi
    • Journal Title

      Hokkaido Mathematical Journal Vol.31

      Pages: 385-429

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] An Identification Method of Electric Current Dipoles in Spherically Symmetric Conductor2002

    • Author(s)
      K.Yamatani
    • Journal Title

      Journal of Computational and Applied Mathematics Vol.143

      Pages: 189-200

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Fully Discrete Approximation by Galerkin Runge-Kutta Methods for Quasilinear Parabolic Systems2002

    • Author(s)
      E.Nakaguchi, A.Yagi
    • Journal Title

      Hokkaido Mathematical Journal 31-2

      Pages: 385-429

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] An Identification Method of Electric Current Dipoles in Spherically Symmetric Conductor2002

    • Author(s)
      K.Yamatani, T.Ohe, K.Ohnaka
    • Journal Title

      Journal of Computational and Applied Mathematics 143-2

      Pages: 189-200

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Publications] H.Inui: "A Reliable Identification of Electric Current Dipoles using Harmonic Functuions"J. of Computational and Applied Mathematics. Vol.157 No.1. 107-123 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] M.Aida: "Global Attractor for Approximate System of Chemotaxis and Growth"Dynamics of Continuous, Discrete and Impulsive Systems, Series A. Vol.10 Nos.1-3. 309-315 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] E.Nakaguchi: "Numerical Analysis for Semilinear Evolution Equations of Parabolic Type"J.Computational and Applied Mathematics. Vol.159 No.1. 91-99 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Y.Iwata: "Stability of Equilibriums in One-Dimensional Motion of Compressible Viscous Gas Forced by Self-gravity"Proc.Internat.Conference "Abstract and Applied Analysis, Hanoi, 2002". Kluwer(in press). 85-97

    • Related Report
      2003 Annual Research Report
  • [Publications] K.Yamatani: "An Identification Method of Electric Current Dipoles in Spherically Symmetric Conductor"J. Computational and Applied Mathematics. Vol.143 No.2. 189-200 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] E.Nakaguchi: "Fully Dicrete Approximation by Galerkin Runge-Kutta Methods for Quasilinear Parabolic Systems"Hokkaido Mathematical J.. Vol.31 No.2. 385-429 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] K.Osaki: "Exponential Attractor for a Chemotaxis-growth System of Equations"Nonlinear Analysis. Vol.55 No.1. 119-144 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] T.Tsujikawa: "Exponential Attractor for an Adsorbate-induced Phase Transition Model"Kyushu J. of Mathematics. Vol.56 No.2. 313-336 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] H.Inui: "A Reliable Identification of Electric Current Dipoles using Harmonic Functions"J. Computational and Applied Mathematics. (in press).

    • Related Report
      2002 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi